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We present a rigorous Bloch mode scattering matrix method for modeling two-dimensional photonic crystal
structures and discuss the formal properties of the formulation. Reciprocity and energy conservation consid-
erations lead to modal orthogonality relations and normalization, both of which are required for mode calcu-
lations in inhomogeneous media. Relations are derived for studying the propagation of Bloch modes through
photonic crystal structures, and for the reflection and transmission of these modes at interfaces with other
photonic crystal structures.
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I. INTRODUCTION

Photonic crystals(PCs) have become one of the main-
stream research areas in contemporary optics[1]. This inter-
est is fueled by the unique, intrinsic properties of such struc-
tures which resemble, in some respects, those of
semiconductors. It has already been established that photonic
crystals have the ability to guide light along intricate paths
without substantial diffraction losses[2]. Photonic crystal
materials can also modify substantially the electromagnetic
density of states[3] leading to their ability to control the
emission properties of sources embedded in them. In particu-
lar, they can completely suppress the density of states, thus
creating a “true vacuum” for electromagnetic waves. These
capabilities are ideally suited to the miniaturization of optical
components leading to ultracompact optical devices that can
be assembled onto a single photonic chip[4], and already an
all-optical transistor based on the photonic crystal has been
proposed[5]. Different components inside a photonic chip
may be connected using complicated “wiring” networks
comprising waveguides with bends[6], Y [7] and T junctions
[8], channel drop filters[9], as well as different types of
directional couplers[10,11]. In such complex microstruc-
tures, photonic crystals with different parameters(such as
superprisms[12] or Mach-Zehnder interferometers[13]) may
be interfaced. The modeling of such devices thus requires a
comprehensive understanding of how PC devices couple to
one another or to external conventional waveguides[14], and
how light is guided within such devices.

The modeling of photonic crystals and composite devices
built from these is a challenging task. The choice of optical
materials and the geometry and scale of the structure makes
the PC a strongly scattering environment in which it is nec-
essary to take into account many scattering events. Among
the numerical methods that are generally used to model PC
structures are finite difference time domain methods[15],

plane-wave methods[16], beam propagation methods[17],
transfer matrix methods[18], layer Korringa-Kohn-Rostoker
methods[19,20], Wannier function methods[21,22], and fi-
nite element methods[23].

Although these methods often produce accurate results,
they are entirely numerical in their approach and do not eas-
ily give physical insight into the underlying propagation
mechanisms. Despite the importance of this, thus far only an
approximate semianalytic theory based on coupled mode
analysis has appeared in Refs.[24,25]. Recently, methods
based on the Bloch mode transfer matrix, or related tech-
niques, have emerged and generated interest[22,26–34]. We
have used the transfer matrix formalism in our method and
developed a semianalytic approach to the modeling of pho-
tonic crystals based on the Bloch mode expansion. While a
brief account of our method has been presented[33,34], this
paper provides a comprehensive treatment of the method,
and of its underlying mathematical structure, which reveals
the limitations of the coupled mode method[24,25].

The real strength of the method is its use of the natural
(Bloch mode) basis of functions to describe the properties of
photonic crystals. If we consider a plane wave incident upon
a photonic crystal, the incident field excites a field within the
PC which can be expanded as a superposition of Bloch
modes. In many practical situations, however, only one or,
more generally, a few propagating Bloch states actually con-
tribute to the far field of the device. This reduces the com-
plexity of the analysis of the multiple scattering problem
and, in many cases, transforms the analysis of the PC to that
of well known devices(such as generalizations of the Fabry-
Pérot interferometer) that arise in thin-film optics.

The paper is divided into two parts: Part I provides the
rigorous theoretical foundation using the complete set of
modes while in Part II[35] we study a range of applications
including waveguide dislocations, resonators, folded direc-
tional couplers, and coupled Y junctions, the calculations for
which use both the complete mode set and also expansions
that are appropriately truncated.

In Part I, we begin in Sec. II by establishing the Bloch
mode basis for a two-dimensional(2D) photonic crystal from*Electronic address: Lindsay.Botten@uts.edu.au
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the solution of an algebraic eigenvalue problem associated
with the transfer matrix. We then characterize the modes via
constraints imposed on the transfer matrix by reciprocity
and, for lossless structures, energy conservation. Each of
these imposes a pairing relationship which enables the set of
all modes to be partitioned into downward and upward sets,
with otherwise identical sets of propagation constants. These
conservation relationships also allow us to normalize and
orthogonalize the modes, which subsequently enable modal
field quantities to be expressed in their physically most in-
tuitive form. In Sec. III, we analyze propagation in extended
photonic crystal devices by studying the basic building
blocks: propagation in a single(finite or infinite) uniform PC
medium, and the scattering and diffraction of Bloch modes at
a single interface between two semi-infinite PCs. With re-
spect to the latter, the action of the interface is characterized
in terms of Bloch mode reflection and transmission scatter-
ing matrices that are generalizations of the Fresnel coeffi-
cients in thin-film optics. Finally, the extended structure is
modeled in a recursive manner that exploits the two basic
building blocks described immediately above. In the com-
panion article, Part II[35], which deals with a range of ap-
plications, we also study the asymptotics of far field calcu-
lations and justify the use of only the propagating Bloch
modes in that case.

II. BLOCH MODES AND THEIR CHARACTERIZATION

A. Method and nomenclature

We consider a two-dimensional structure that comprises a
set of stacksM1,M2,… ,MN, each of which is built from
identical diffraction grating layers with a transverse period
Dx. Media M1 and MN are semi-infinite and represent the
input and output domains for the problem. WhileM1 andMN
may be photonic crystals, they may also be any homoge-
neous medium(e.g., dielectric or free space), or more gen-
erally any periodic medium(provided that the periods of all
media are common) for which Bloch modes can be defined.
Because of the gratings’ periodicity, the functional elements
of the structure are contained within a supercell(see Fig. 1),
the dimension of which is chosen to be large enough to en-
sure effective isolation from neighboring supercells when
operated within a band gap of the bulk crystal.

The periodicity imposed by the diffraction grating model
means that individual layers are coupled together by plane-
wave diffraction orders, the directionsus of which are given
by the grating equation

k sinus = as = a0 +
2ps

Dx
, s= 0, ± 1, ± 2,…, s1d

wherea0=k0x is the component of the Bloch vector along the
direction of periodicity of the gratings, andk=2p /l is the
wave vector in the background medium. The integerss in
Eq. (1) run over a finite set of propagating orders, and an
infinite set of evanescent orders.

In a PC, the action of each grating is determined not only
by its geometry, but also by the geometry of the lattice in
which it is embedded. In general, four scattering matrices—

two for reflection and two for transmission—are required
since each grating may appear differently when viewed from
above or below. We note that for a simple(up-down sym-
metric) cylinder grating embedded in a rectangular lattice,
the symmetry of both the cylinder and the lattice enables the
grating to be characterized by a single reflection and a single
transmission matrix. In the treatment that follows, we denote
the plane-wave reflection and transmission scattering matri-

ces of a single layer byR̃ ,T̃ and R̃8 ,T̃8, with the two pairs
corresponding to incidence from above and below, respec-

tively. For example, the elementR̃pq specifies the reflected
amplitude in plane-wave orderp due to unit amplitude inci-
dence from above in plane-wave orderq. The tilde is used
here to differentiate between the plane-wave scattering ma-
trices for a single grating layer, and those for a grating stack,
which we introduce in Sec. III.

Grating scattering matrices can be computed with a vari-
ety of techniques, including integral equation methods and
differential-Fourier methods[31,32,36,37], among others.
Here, however, we use amultipole method [20], which is
appropriate to cylinder gratings, and which is an efficient
computational tool. The sole proviso on the use of this
method is that adjacent layers do not interpenetrate, thus al-
lowing the use of plane-wave field expansions(3) at match-
ing interfaces. Strictly speaking, the requirement that layers
do not interpenetrate is sufficient, but not necessary. In fact,
provided that the interpenetration is not too severe, the
plane-wave expansions on the matching interfaces are still
valid. The issue is directly related to the Rayleigh contro-
versy of diffraction grating theory[37] concerning the valid-
ity of plane-wave representations for outgoing fields within
the grooves of diffraction gratings. In cases where layer in-
terpenetration is a problem, it is necessary to abandon the
multipole method as the means of computing the scattering
matrices, replacing it by alternative techniques including dif-
ferential (Fourier), integral, or finite element methods.

For the cases to which it applies, the multipole method is
arguably the preferred technique as the formulation is ana-
lytically elegant, and structurally embodies key properties

FIG. 1. Schematic of a photonic crystal structure formed by
joining stackssM1–MNd (here N=4), each consisting of identical
grating layers. All layers must have the same supercell periodDx,
but the positions and properties of the cylinders within a layer can
all be different. StacksM2–MN−1 containLm layers; stacksM1 and
MN are semi-infinite. Layer interfaces within each stack are num-
beredn=0 to Lm.
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[38] such as reciprocity and energy conservation analytically
within the formulation. These properties can be verified(ef-
fectively) to within machine precision and the analytic pres-
ervation of these properties is inherited by the Bloch modes,
making the method both analytically tractable and easy to
validate numerically.

Here we introduce the eigenvalue problem defined by the
transfer matrix and proceed in subsequent sections to classify
the modes, and to derive important results that are used to
normalize and orthogonalize modes. These are needed in or-
der to provide a suitable basis for field amplitude and energy
calculations that realizes the key properties of reciprocity and
energy conservation in the most simple and elegant manner.

We begin by considering an infinite 2D photonic crystal,
operated in either of its two fundamental polarizations. In the
background medium, the fields satisfy the usual Helmholtz
equation

s¹2 + k2dVsr d = 0 s2d

where k denotes the wave number in the background me-
dium. In the cases of TM and TE polarizations, respectively
the scalar functionV denotes the single electric and magnetic
field component that is aligned with the axis of the cylinders.
On the the upper and lower interfaces(respectively denoted
by j =1, 2 in Fig. 1) of a grating layer, we expand the fields
in plane waves as

Vf
s jdsr d = o

s=−`

`

xs
−1/2sfs

s jd−e−ixssy−yjd + fs
s jd+eixssy−yjddeiasx, s3d

whereas is defined in Eq.(1), xs=Îk2−as
2, with Imsxsdù0,

and theyj are the heights of the reference interfaces(see Fig.
1). While such plane-wave expansions are strictly valid only
for noninterpenetrating layers, the solution for interpenetrat-
ing layers may be constructed by envisaging infinitesimal
thickness interfaces of background material, separating the
grating layers, in which these plane-wave expansions are
valid. Accordingly, we characterize the plane-wave fields at
the interfacesj by vectors of plane-wave coefficients of the
form f s jd7=ffs

s jd7g, associated with the subscript and super-
script entries in the field termVf

s jdsr d.
In the design of PC devices, the entire structure is gener-

ally operated in a band gap. The use of a plane-wave method
thus necessitates that the lateral sizeDx of the supercell be
sufficiently large to isolate device components. ProvidedDx
is large enough, this isolation renders the calculation essen-
tially independent of the value ofa0. For convenience, the
reasons for which become apparent later, we choosea0=0.

The transfer matrix[26,28] relates the fieldsf j on either
side of the grating according to the relation

f2 =T f1 wheref j = Ff s jd−

f s jd+G , s4d

and

T =FT̃ − R̃8T̃8−1R̃ R̃8T̃8−1

− T̃8−1R̃ T̃8−1
G

= FT̃ R̃8

0 I
GF I 0

R̃ T̃8
G−1

;
def

U2U1
−1. s5d

The matricesU1 andU2 have a simple physical interpreta-
tion, relating the total field vectorsf j on either side of the
grating layer to the incoming fields impinging upon the grat-
ing. That is,

f1 =U1f inc, f2 =U2f inc wheref inc = Ff s1d−

f s2d+G . s6d

The Bloch modes of the crystal then follow from the im-
position of the Bloch condition which leads to the eigenvalue
equation

T f = mf , s7d

where m=exps−ik0·e2d ,ei denotes the basis vectors of the
lattice formed by the gratings, andk0=sk0x,k0yd is the Bloch
vector with k0x=a0=0, as described above. Here,e2 is the
basis vector in the direction of translation.

While the transfer matrixT is of fundamental theoretical
importance, it is of limited practical computational use be-
cause of the numerical problems that arise in the computa-

tion of the inverse of the transmission matricesT̃8. Instead,
the eigenvalue problem is solved by transforming it to more
robust forms[27,28].

Any practical solution requires the truncation of the infi-
nite plane wave series(3), resulting in transfer matrices of
even dimension. It is then possible to partition the solutions
of Eq. (7) into equal numbers of downward and upward
propagating modes, with the actual nature of the pairing dis-
cussed in Sec. II B. For the present, we observe that for
nonpropagating statessumuÞ1d, which carry no energy
through an infinite crystal, their directionality is character-
ized by the direction of their decay—downwardumu,1, and
upward umu.1. The directionality of the propagating states
umu=1 is characterized by the vertical component of group
velocity vgy of the mode. Since the group velocity and the
energy flux sE fd normal to the grating are related byE f

~vgyED (where ED is the energy density), it follows that
modal directionality can be inferred from the sign of the
mode fluxE f [26], with positive and negative values, respec-
tively, denoting downward and upward propagation[38].
Here,

E f = fHIPWf = f−
HI pf− − f+

HI pf+ − isf−
HI p̄f+ − f+

HI p̄f−d, s8d

where

IPW = F I p − iI p̄

iI p̄ − I p
G , s9d

with I p denoting a diagonal matrix whose rows and columns
designate the plane-wave(PW) channels and whose values
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are 1 for propagating(i.e., nonevanescent) plane waves(xs
real) and 0 otherwise.I p̄= I − I p is its complement, containing
unit diagonal elements only for the evanescent plane waves.

With the modes now partitioned,T can be written in its
diagonalized form

T =FLF−1, s10d

a result that encapsulates the entire family of eigenvalue
equationsTF=FL from Eq. (7). In this representation,F
is a matrix, the columns of which are the eigenvectors ofT,
andL is a diagonal matrix whose entries are the correspond-
ing eigenvaluesm. In the light of the eigenvalue pairings
discussed above, we may partitionF andL as follows:

F = FF− F−8

F+ F+8
G, L = FL 0

0 L8
G s11d

with the columns of the matricesF7 ,F78 formed from thef7

components of the eigenvectors for the downward and up-
ward modes, respectively, and withL andL8 being diagonal
matrices containing the corresponding eigenvaluesm j for the
downward and upward propagating states. For convenience,
the modes are ordered with propagating modes, i.e., those for
which um ju=1, listed first.

B. Mode characterization: Reciprocity and symplecticity

Important results that characterize the modes may be de-
rived from the physical concepts of reciprocity and energy
conservation. In this section we focus on the former, a geo-
metrical constraint that holds for any nonmagnetic material,
and show that it constrains the transfer matrix to be symplec-
tic and enforces a pairing of downward and upward states.

The derivation follows from the application of Green’s
theorem

T sVg¹
2Vf − Vf¹

2VgddA= R SVg
] Vf

] n
− Vf

] Vg

] n
Dds

s12d

around the supercell grating layer. The fieldsVf andVg both
satisfy the Helmholtz equation with the same value ofk. On
the interfacesj =1, 2 of Fig. 1(above and below the grating
layer) the fields are represented by plane-wave expansions
(3) associated with vectors of field coefficients. Since the
area integral in Eq.(12) vanishes and the field periodicity
sa0=0d cancels contributions to the line integral at the edges
of the supercell, it follows that the line integralsIRsyd over
the upper and lower surfacesG j , j =1, 2, are identical. That
is, IRsy1d= IRsy2d where

IRsyjd =
1

2iDx
E

0

Dx USVg
] Vf

] y
− Vf

] Vg

] y
DU

y=yj

dx= gj
TQPWf j ,

s13d

with

QPW = F 0 Q

− Q 0
G . s14d

Here,QPW denotes the reversing permutation which is de-
rived by reversing the order of the rows of the identity matrix
I . In Eq. (13), the fields represented bygj and f j are both
plane-wave series of the form(3), for the same value ofk,
the coefficients of which are the entries of the respective
vectors. The relevant generalized inner product(13), in bi-
linear form in this problem, is skew symmetric, i.e.,
gj

TQPWf j =−f j
TQPWgj, mirroring the properties of the cross

product which is inherited from Maxwell’s curl equations.
Note that the choice ofa0=0 ensures that the plane-wave
basis in whichVf and Vg are expanded is common to both
and also orthogonal, thus leading to the bilinear form in Eq.
(13).

Thus, the skew-symmetric inner productgTQPWf is con-
served in that it has the same value on each grating interface,
i.e.,

g1
TQPWf1 = g2

TQPWf2. s15d

Applying the transfer equationsg2=Tg1 and f2=Tf1, it then
follows that

g1
TsT TQPWT −QPWdf1 = 0.

Observing thatf1 and g1 may be expressed in terms of the
incoming fieldsf inc andginc via f1=U1f inc andg1=U1ginc, we
deduce

ginc
T U1

TsT TQPWT −QPWdU1f inc = 0. s16d

Then, since the incident fields may be chosen arbitrarily and
U1 is nonsingular, we deduce thatT must be symplectic
[39]—a common nomenclature for the result

T TQPWT =TQPWT T =QPW,

or T T =QPWT −1QPW
−1 , s17d

with respect to the generalized inner product(13) defined in
terms of the skew-symmetric matrixQPW (14). This sym-
plectic structure is a natural reflection of the reciprocity theo-
rem and holds even when material losses are present.

SinceT T andT −1 are related by a similarity transforma-
tion (17), the eigenvalues ofT T, namely,m, and the eigen-
values ofT −1, namely,m−1, must be paired. In particular, if
m is the eigenvalue of a downward propagating state, then
m−1 is the eigenvalue of the corresponding upward propagat-
ing state. From this it follows that eigenvalue matricesL and
L8 of Eq. (10) are related byL8=L−1.

Some aspects of the structure of the eigensystem emerge
when the diagonalized form ofT (10) is applied to the sym-
plectic property ofT (17) to derive

LFTQPWFL =FTQPWF.

Observing thatFTQPWF is antisymmetric and thatL8
=L−1, it is easily shown that
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FTQPWF = F 0 I

− I 0
G =QBM, s18d

after scaling the columns ofF appropriately. HereQBM is
the Bloch mode equivalent of the matrixQPW which was
defined with respect to the plane-wave basis.

Key reciprocity relations for the constituent grating layer
may also be derived when we substitute Eq.(5) into Eq.(17),
thus derivingU2

TQPWU2=U1
TQPWU1. When all four matrix

partitions of this expression are expanded, we arrive at the
reciprocity relations for the scattering matrices of the single
grating layer, namely,

R̃T = QR̃Q, R̃8T = QR̃8Q, T̃8T = QT̃Q. s19d

As mentioned, the relationships(19) hold analytically within
the multipole formulation that is used to compute the scat-
tering matrices[38]. The symplectic nature ofT, and the
eigenvalue pairing(18) that follows from this, are thus sat-
isfied independently of the multipole truncation limits of the
code that generates the scattering matrices. Therefore, Eqs.
(17) and (18) hold to within (effectively) machine precision
in our computational implementation. We conclude by ob-
serving that with alternative methods of computing the grat-
ing layer scattering matrices, specifically those that do not
analytically conserve the relationships in Eq.(19), we may
exploit these relationships as tests of the convergence of the
computational method.

C. Mode characterization: Energy conservation and
orthogonality

In Sec. II B, we used the geometrical constraint of reci-
procity to investigate the structure of the transfer matrix as-
sociated with the eigensystem of Eq.(7). Here we further
explore the properties of the eigensystem, demonstrating that
energy conservation and modal orthogonality relations hold
analytically within the formulation.

For lossless systems, Green’s theorem

0 = T sVf¹
2V̄g − V̄g¹

2VfddA= R SVf
] V̄g

] n
− V̄g

] Vf

] n
Dds

s20d

yields a further conservation relation that establishes or-
thogonality relationships for the modes. Note that the left
hand side of Eq.(20) vanishes only for lossless systems and
that field periodicity cancels contributions to the line integral
at the edges of the supercell. It thus follows that the line
integralsIFsyd over the upper and lower interfacesG j , j =1,
2, are identical. That is,IFsy1d= IFsy2d where

IFsyjd = U 1

2iDx
E

0

Dx SVf
] V̄g

] y
− V̄g

] Vf

] y
DU

y=yj

dx= gj
HIPWf j ,

s21d

with IPW defined in Eq.(9). The bilinear formgHIPWf
in Eq. (21) is simply a generalization of the energy flux
of Eq. (8), with the downward flux of the plane-wave field

sEF= f j
HIPWf jd corresponding to Eq.(21) with gj = f j.

The conservation ofIFsyd on each interface implies

g1
HIPWf1 = g2

HIPWf2, s22d

and this together with the transfer relationsf2=Tf1 and g2
=Tg1 yields

g1
HsT HIPWT −IPWdf1

H = 0.

Proceeding as for Eq.(16) and expressingf1 andg1 in terms
of incident fieldsf inc and ginc which may be chosen arbi-
trarily, we determine a new conservation relation for the
transfer matrix, namely,

T HIPWT =IPW. s23d

While relationships of this type have appeared in the litera-
ture associated with electron conductance in thin wires
[40,41], this electromagnetic form differs significantly from
the electronic form through the presence of the terms de-
noted byI p̄ in the off-diagonal partitions ofIPW (9). Such
terms characterize contributions to energy related quantities
arising from evanescent(nonpropagating) plane-wave order
coupling.

Explicit forms for the energy conservation relations that
are satisfied by the grating reflection and transmission matri-
ces may be found by substituting the representationT
=U2U1

−1 (6) for the transfer matrix into Eq.(23), thus deriv-
ing

U2
HIPWU2 =U1

HIPWU1.

By expanding all four partitions of this matrix relation we
derive

R̃HI pR̃ + T̃HI pT̃ = I p + iR̃HI p̄ − iI p̄R̃, s24ad

R̃HI pT̃8 + T̃HI pR̃8 = iT̃HI p̄ − iI p̄T̃8, s24bd

R̃8HI pT̃ + T̃8HI pR̃ = iT̃8HI p̄ − iI p̄T̃ , s24cd

R̃8HI pR̃8 + T̃8HI pT̃8 = I p + iR̃8HI p̄ − iI p̄R̃8, s24dd

which are succinctly summarized in the form

SHFI p 0

0 I p
GS = FI p 0

0 I p
G + iSHFI p̄ 0

0 I p̄
G − iFI p̄ 0

0 I p̄
GS,

s25d

where

S =FR̃ T̃8

T̃ R̃8
G s26d

denotes theS matrix of the grating layer. Since these rela-
tionships hold analytically within the framework of the mul-
tipole formulation[38], Eqs.(24), and all properties that fol-
low from these, hold analytically, independent of the
truncation of the multipole series for field quantities in the
determination of the scattering matrices. Equations(23)–(25)
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can therefore be verified numerically, effectively to within
machine precision.

We now use Eq.(23) to establish the orthogonality rela-
tions for the Bloch modes. Recall that in Sec. II B we
showed that the eigenvaluesm andm−1 were paired because
of the symplecticity ofT (17). A further eigenvalue pairing
relationship can now be established from Eq.(23), T H

=IPWT −1IPW
−1, which reveals thatT H andT −1 are related

by a similarity transformation. Thus, for lossless systems for
which Eq. (23) holds, the eigenvaluesm and m−1 are also
paired, where the overbar denotes the complex conjugate.
Combing this with the pairing implied by the symplectic
property(17) of T, we see that the eigenvalues ofT always
occur as a quadruple comprisingm ,m ,m−1,m−1. For propa-
gating modes(for which m=m−1) or evanescent modes for
which m may be real(as may occur for rectangular lattices),
this quadruple degenerates to a simple pairing relationship.

The structure of the eigensystem and the nature of the
orthogonality relations then follows by substituting the di-
agonalized form forT (10) into (23) to reveal

LFHIPWFL = FHIPWF, s27d

noting also thatL8=L−1 from the discussion above. Then,
observing thatFHIPWF is Hermitian, and writing

FHIPWF = F A B

BH D
G , s28d

it follows, by expanding the partitioned form(27), that
LAL=A ,LBL−1=B, and L−1DL−1=D. From the first of
these identities we see that that this requiresAlmsmlmm−1d
=0 for all l ,m. Since umlu=1 for propagating states and
umlu,1 for evanescent states, we can see that the elements
Alm can take nonzero values only on that part of the diagonal
of the matrixsl =md that corresponds to propagating modes.
Furthermore, sinceA is Hermitian, these diagonal entries
must be real and thus we writeA=Am, indicating that the
matrix has a diagonal form with nonzero entries associated
with the propagating modes. The same arguments lead us to
deduce thatD takes the same form, i.e.,D=Dm. Finally, for
B, we see that its elements must satisfyBlmsml /mm−1d=0.
Since the eigenvaluesml occur in the quadruple discussed
above, we can make the termsml /mm−1d vanish by selecting
l andm such thatsmld=mm. Since theml are chosen from the
set of downward propagating modes, this constraint can be
satisfied only for evanescent modes. Furthermore, by ex-
panding the left hand side of Eq.(28), we see thatB must be
skew Hermitian and we deduce thatB=−iBm̄ whereBm̄ is a
real block diagonal matrix with nonzero entries associated
only with the evanescent or nonpropagating modes. Thus,

FHIPWF = F Am − iBm̄

iBm̄ Dm
G . s29d

Combining both Eqs.(18) and(29), and scaling the columns
of F appropriately, we can write down the normalized rela-
tionships satisfied by the modes(which comprise the col-
umns ofF)

FTQPWF = F 0 I

− I 0
G =QBM, s30ad

FHIPWF = F I m − iI m̄

iI m̄ − I m
G =IBM. s30bd

In Eqs.(30), them subscripts refer to the propagating Bloch
modes in mediumm, whereasm̄ refers to nonpropagating
Bloch modes, and

I m;n1,n2
=Hdn1n2

for propagating statesn1,

0 otherwise,
J

I m̄;n1n2
=5

0 if n1 or n2 denotes a

propagating state,

1 if n1 = n2 andn1 denotes an

evanescent state with

a real eigenvalue,

F0 1

1 0
G if n1 andn2 are a conjugate

evanescent pair.

6
Observe that relations(30a) and(30b) involve all possible

modes—both propagating and evanescent. We now consider
the implications oforthogonality relations(30b) by what
these reveal for individual propagating or evanescent states.
Specifically, for two downward modesf l and fm, we have
f l
HIPWfm=dlm if both are propagating andf l

HIPWfm=0 for all
other combinations of propagating and evanescent modes. In
particular, we note that the zero diagonal elements associated
with the evanescent modes imply that such modes carry zero
flux. Similarly, for two upward propagating statesf l8 and fm8 ,
we have f l8

HIPWfm8 =−dlm if both are propagating and
f l8

HIPWfm8 =0 for all other combinations. The most interesting
and unusual of these relations are those associated with the
evanescent coupling of a downward and an upward mode.
Here we see that withf l andfm8 , respectively, denoting down-
ward and upward propagating states,f l

HIPWfm8 =−idlm if both
modes are evanescent, andf l

HIPWfm8 =0 for all other combi-
nations.

In Sec. III, we develop models for propagation in
multilayer PC devices, deriving expressions for various en-
ergy quantities and developing relationships based on reci-
procity and energy conservation that are used to validate the
formalism. The use of an appropriately normalized modal
basis is of paramount importance and the relations(30a),
which expresses the normalization imposed by reciprocity,
and (30b), which constitutes the orthogonality relations, are
precisely the forms that are needed to ensure the representa-
tion of physical quantities, such as field amplitudes and
modal fluxes, in their simplest and physically most amenable
forms. With the modal basis normalized according to Eq.
(30b), we can express mode fluxes in a manner that is struc-
turally identical to that which applies to plane waves[see Eq.
(35)] and which, in the simplest case, corresponds to com-
puting the square magnitude of a modal amplitude. Further-
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more, the normalization of Eq.(30a) enables all reciprocity
relations for modal scattering matrices to be expressed in
terms of simple matrix symmetry relations[e.g., Eq.(51)].

In concluding this section, it is important that we differ-
entiate clearly between the orthogonality relations developed
here and the more familiar orthogonality relationships that
are satisfied by the modes of the operator eigenvalue equa-
tion [43]

QHsr d = = 3 S 1

«sr d
= 3 Hsr dD =

v2

c2 Hsr d. s31d

In computing the modes from the eigenvalue problem of Eq.
(31), the eigenvalues of which are the permissible frequen-
ciesv of the modes, we select a Bloch vectork0 and deter-
mine a basis of modes, the orthogonality of which follows
from the Hermitian property of the operatorQ. In contrast, in
our derivations above, we select the frequency(or wave-
length), and solve the eigenvalue problem for the transfer
matrix (7) to determine the Bloch vectors of the modes. This
set of modes is complete and forms a basis in which we can
expand electromagnetic fields. However, as is evident from
the discussion and derivation above, these modes are not
orthogonal in the conventional sense, due to the presence of
the matrixIPW (9) in the defining inner productgHIPWf that
derives from flux considerations(21). While the matrixIPW
is Hermitian, it is not positive definite(having distinct eigen-
values of ±1) and thus cannot define a true inner product.
Moreover, it is the off-diagonal blocks ofIPW that are asso-
ciated with paired evanescent order propagation of energy
which preclude the existence of an orthogonality relationship
that is analogous to those satisfied by Hermitian operators.
While the orthogonality relationships derived above are im-
portant for the normalized representation of field quantities,
they do not assist in the computational solution of the field
problem which requires the inversion of dense matrices.

III. PROPAGATION IN PHOTONIC CRYSTAL
DEVICES

This section focuses on the solution of propagation prob-
lems in extended photonic crystal devices comprising a num-
ber of PC stacksM1,M2,… ,MN, as in Fig. 1. It commences
with the formulation of the problem in a single PC medium
and then analyzes the propagation of Bloch modes across an
interface between two semi-infinite PC media, introducing
Bloch mode scattering matrix generalizations of the usual
Fresnel reflection and transmission coefficients. These two
threads are then drawn together to solve the propagation
problem in a multi-layer structure. The tools derived in Sec.
II are exploited to derive elegant forms for the reciprocity
and energy conservation relations.

A. Propagation in a single photonic crystal medium

We consider the propagation of light in a medium com-
prising L layers of a finite photonic crystal structure. We
derive expressions for the plane-wave fields at successive
interfaces between the grating layerssn=0,1,… ,Ld (see Fig.
1) in terms of the Bloch mode expansions, and derive an

expression for the energy flux in terms of Bloch mode coef-
ficients. Knowledge of these plane-wave quantities enables
the calculation of the energy flux through the layer and the
reconstruction of the field within the layer. For the multipole
method that we use to generate the grating scattering matri-
ces, a knowledge of the incoming plane-wave fields to each
grating layer enables the calculation of the multipole source
coefficients[20] for the cylinder grating. From this, the total
field can be computed as the superposition of the incoming
plane-wave fields and the outgoing scattered field expressed
in a multipole series.

From Fig. 2, the interfacesn=0 and n=L denote the
boundaries between this photonic crystal stack and some
other medium(such as another PC, free space, dielectric,
etc.). These surfaces are respectively sources of forward
(downward) and backward(upward) propagating modes re-
spectively. At some interfacen, the coefficient vectors for the
downward and upward plane-wave fields used in the expan-
sion (3) are

fsnd = Ff−snd
f+snd G = FF−

F+
Gc−snd + FF−8

F+8
Gc+snd s32d

where c7snd denote the amplitudes of the downward and
upward Bloch modes at interfacen as in Fig. 2, andcsnd
=fc−sndTc+sndTgT. Since the downward and upward Bloch
modes traveln and L−n layers, respectively, from their
sources at the upper and lower boundaries,c−snd=Lnc− and
c+snd=LL−nc+, wherec7 denote the amplitudes of the down-
ward and upward Bloch modes at their origins(Fig. 2).
Hence,

fsnd =Fcsnd, s33d

where

csnd =LsL,ndc̃,

FIG. 2. Downward and upward Bloch mode amplitudesc−snd
andc+snd defined at interfacen in a stack of lengthL in terms of
Bloch modes sourced, respectively, from the interfaces abovesc−d
and belowsc+d the stack.
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LsL,nd = FLn 0

0 LL−nG, c̃ = Fc−s0d
c+sLd G = Fc−

c+
G . s34d

Once the Bloch mode coefficients coefficientsc− andc+ are
known, thenfsnd can be computed for each interface, thus
enabling the field within each layer to be reconstructed from
a knowledge of the incoming fields[i.e., f−snd ,f+sn+1d].

We turn now to the energy flux carried by the Bloch
modes which, at each interface, is given by Eq.(8):

E fsnd = fHsndIPWfsnd

= csndHFHIPWFcsnd

= csndHIBMcsnd, s35d

where the final simplification relies on the modal orthogonal-
ity relationship(30b) and yields the Bloch mode equivalent
of the plane-wave flux expression(8). Expanding this ex-
pression, we see that the energy flux at interfacen is given
by

E fsnd = o
jPVm

fuc−snd ju2 − uc+snd ju2g − i o
jPVm̄

fc−snd jc+snd j

− c+snd jc−snd jg, s36d

whereVm is the set of propagating modes, andVm̄ is the set
of nonpropagating or evanescent modes. The first sum in Eq.
(36), over the propagating modes, is the difference between
the modal fluxes for the downward and upward propagating
states. Note that the normalization imposed through Eq.
(30b) enables propagating mode fluxes to be computed di-
rectly from the square magnitude of the modal amplitude.
The second series is a sum over the evanescent modes and
expresses the flux contribution due to coupling between the
downward and upward evanescent states.

We return now to the calculation of the flux in ourL-layer
medium and substitutecsnd=LsL ,ndc̃ from Eq.(33) into Eq.
(35) to derive

E fsnd = c̃HL̄sL,ndIBMLsL,ndc̃

= fc̃−
H c̃+

HgF I m − iI m̄LL

iLLI m̄ − I m
GFc̃−

c̃+
G . s37d

As expected, the flux is independent of the layern, a result
which relies on the eigenvalue pairings, discussed in Sec.
II B, which constrain the eigenvalues to be real or to appear
in conjugate pairs. Note also that as the lengthL of the me-
dium increases, the influence of the evanescent order cou-
pling diminishes since the evanescent states have eigenval-
uesumu,1. Accordingly, for an infinitely long structure(i.e.,
L→`), Eq. (37) reduces toomPVm

uc̃m
−u2− uc̃m

+u2, the differ-
ence between the downward and upward fluxes with the
summation taken over only the propagating states. Thus, in
this limit, the evanescent mode pairs can carry no power.

B. Coupling semi-infinite photonic crystals

Propagation through a heterogeneous photonic crystal
stack can be regarded as an alternating sequence of propaga-

tion through a uniform layer(Sec. III A) and the diffraction
of the field at the common interface of two successive PC
layers. Here, we consider the reflection and transmission of
Bloch modes at the interface between two semi-infinite me-
dia M1 and M2, and derive the photonic crystal analogs of
Fresnel’s reflection and transmission coefficients. The
Fresnel coefficients are now Bloch mode scattering matrices,
with the domain and range of the transformations defined by
the Bloch modes of the input and output media.

The interface betweenM1 andM2 is a fictitious line that is
the boundary between a grating layer in each medium. Since
all field components are continuous on this line, both the
upward and the downward propagating fields must be con-
tinuous across the interface. Denoting byf1 and f2 the fields
(4) on either side of the interface, we can express field con-
tinuity by the relation

f1=
def

F1c1 = FF1
−

F1
+Gc1

− + FF1
−8

F1
+8Gc1

+ = FF2
−

F2
+Gc2

− + FF2
−8

F2
+8Gc2

+

=F2c2=
def

f2. s38d

In Eq. (38), thecj
7 denote vectors containing the Bloch mode

coefficients at the interface in regionj . Note that these are
the same vectors referred to in the previous section asc7,
now defined for each distinct regionj .

We now define the generalized Fresnel(Bloch mode) re-
flection and transmission matrices by the relations

c1
+ =

def

R12c1
− + T218 c2

+, s39d

c2
− =

def

T12c1
− + R218 c2

+, s40d

which express the Bloch modes that are outgoing from the
interface in terms of the Bloch modes which are incident on
the interface. The Bloch mode scattering matrices are set in a
sans serif typeface so as to distinguish them from the plane-
wave scattering matrices which are presented in the standard
roman typeface. Solving Eq.(38) and expressing outgoing
fields in terms of incoming fields then leads to the following
expressions for the Bloch mode reflection and transmission
matrices:

R12 = sF1
+8d−1sI − R2R18d

−1sR2 − R1dF1
−, s41ad

T12 = sF2
−8d−1sI − R18R2d−1sI − R18R1dF1

−, s41bd

where

R1 = F1
+sF1

−d−1, R18 = F1
−8sF1

+8d−1. s41cd

In Eqs. (41a) and (41b), we see that the domain of each
matrix R12 andT12 is the space spanned by downward propa-
gating modes inM1, while their range is, respectively, the
space of upward propagating modes inM1 and the space of
downward propagating modes inM2.

Corresponding expressions forR218 and T218 may be ob-
tained from those forR12 andT12 by transposing the media
(i.e., swapping the medium identities denoted by 1, 2), trans-
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posing the directionality of the plane waves(i.e., swapping
the directions +,−), and transposing the directionality of the
Bloch modes(i.e., replacing primed quantities by unprimed
quantities and vice versa).

In Eq. (41c) R1 denotes the plane-wave reflection matrix
that characterizes reflection of a plane-wave field incident
from above on a semi-infinite crystalM1. The expression for
R1 follows from the consistency condition between incident
and reflected plane-wave fieldsd and r and the downward
Bloch modes

Fd

r
G = FF1

−

F1
+Gc1

−,

which, once c1
− is eliminated, yieldsr =F1

+sF1
−d−1d, from

which R1 can be inferred. Correspondingly,R18 is the reflec-
tion matrix for the same PC, but this time for plane-wave
incidence from below.

We turn now to the energy and reciprocity relations satis-
fied by the Bloch modes to derive corresponding constraints
for the generalized Fresnel matrices. In Sec. III A we showed
that the flux across an interface(35) is

E f = c1
HI1c1 = c2

HI2c2, s42d

provided that the modes are normalized according to Eq.
(30b). Here,Im is the modal matrixIBM [defined in Eq.
(30b)], but this time subscripted bym to designate the me-
dium m to which it applies. Expressingc1=fc1

−Tc1
+TgT and

c2=fc2
−Tc2

+TgT in terms of the modal fieldcinc that is incident
on theM1-M2 interface, we have

c1 = U1cinc, c2 = U2cinc, s43ad

where

cinc = Fc1
−

c2
+G, U1 = F I 0

R12 T218
G, U2 = FT12 R218

0 I
G .

s43bd

After substituting Eqs.(43a) and(43b) into the conservation
relation (42) and allowingcinc to be arbitrary, we deduce

U2
HI2U2 = U1

HI1U1. s44d

Expanding all four partitions of Eq.(44) and recombining
them into a standard form yields the conservation relations
summarized by

SHI 12S = I 12 + iSHI 1̄2̄ − iI 1̄2̄S, s45ad

where

S = FR12 T218

T12 R218
G, I 12 = FI 1 0

0 I2
G, I 1̄2̄ = FI 1̄ 0

0 I 2̄
G .

s45bd

Here, S is the S matrix associated with the interface
modal reflection and transmission matrices, whileI j is the
identity matrix for real propagating modes inMj andI j̄ is its
complementsI j̄ = I − I jd for the evanescent modes inMj. The
result(45) has precisely the same form as the corresponding
result (25) for the plane-wave scattering matrices that char-

acterized the reflection and transmission of an individual
grating layer. That Eqs.(25) and (45) take exactly the same
form is a consequence of correctly normalizing the Bloch
modes according to orthogonality relation(30b).

There exists a useful, alternative representation of the re-
sult (45) in terms of a Bloch mode transfer matrixT12 that
characterizes mode propagation across theM1-M2 interface.
From Eq.(43a) we have

c2 =T12c1 whereT12 = U2U1
−1. s46d

The flux conservation relation(42) then implies that

T12
HI2T12 =I1, s47d

a form which is equivalent to the energy conservation rela-
tions in Eq.(45a).

The existence of an energy conservation relation for the
interface transfer matrix(45), which is very similar to that
for the corresponding plane-wave transfer matrix relation-
ship for a grating layer(23), suggests a modal equivalent of
the symplectic property ofT (17). This relation leads us to
the reciprocity relations satisfied by the interface reflection
and transmission matrices. The reciprocity relations for the
interface reflection and transmission matrices follow from

the conservation of the skew productf̂TQPWf in Eq. (15),
wheref and f̂ correspond to two distinct scattering problems.

We define plane-wave scattering quantitiesf j and f̂ j on either
side of the interface(j =1, 2). These we express as linear
combinations of Bloch modes in terms of Bloch mode coef-
ficients appropriate to the region which, in turn, are ex-
pressed in terms of the incident Bloch mode fields(43a). We
thus write

f j =F jcj =F jU jcinc and f̂ j =F jU jĉinc. s48d

The conservation of the skew-symmetric inner product
across the interface thus imposes the condition

ĉinc
T U1

TF1
TQPWF1U1

Tcinci
= ĉinc

T U2
TF2

TQPWF2U2
Tcinc,

s49d

which implies that

U2
TQBMU2 = U1

TQBMU1 whereQBM = F 0 I

− I 0
G ,

s50d

after observing thatĉinc andcinc may be arbitrary and that the
modes in each region are normalized according to the reci-
procity relation(30a). Here,QBM is the Bloch mode equiva-
lent operator to the plane-wave formQPW, but this time for
the Bloch mode basis.

Now expanding all four partitions of Eq.(50) we deduce
the reciprocity relations for the generalized Fresnel matrices

R12
T = R12, R218

T = R218 , andT12
T = T218 , s51d

which may be simply summarized in the formST=S. Thus,
reciprocity implies scattering matrix symmetry, provided that
we operate with our basis suitably normalized according to
Eq. (30a). Finally, by rearranging Eq.(50), we may obtain an
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equivalent transfer matrix form of the result, i.e.,

T12
TQBMT12 =QBM. s52d

We conclude by observing that the results stated in this
section hold to within machine precision since the underly-
ing properties hold within the multipole method that is used
to calculate the scattering matrices. It can be shown via a
lengthy analysis that these results propagate through the for-
mulation to yield the corresponding results for Bloch mode
quantities derived above, independently of any series trunca-
tion errors in the calculation of the grating layer plane-wave
scattering matrices.

C. Recursive coupling of stacks

The properties of linear devices comprising a sequence of
heterogeneous media can be calculated through recurrence
relations for the reflection and transmission properties. We
outline the process by adding the stackMn indicated in Fig.
3, thus deriving the Bloch mode scattering matrices
Rn−1,N,Tn−1,N from Rn,N,Tn,N, whereRn,m andTn,m represent
the Bloch mode reflection and transmission matrices for a
stratified structure comprising stacksMn,Mn+1,…Mm, for
downward incidence inMn, upward reflection inMn, and
downward transmission inMm. Now, at theMn−1-Mn inter-
face, we have

cn−1
+ = Rn−1,ncn−1

− + Tn,n−18 cn
+s0d, s53ad

cn
−s0d = Tn−1,ncn−1

− + Rn,n−18 cn
+s0d. s53bd

Similarly, on the upper side of theMn-Mn+1 interface,

cn
+sLnd = Rn,Ncn

−sLnd, s53cd

while the transmission into mediumMN is expressed by

cN
− = Tn,Ncn

−sLnd, s53dd

where

cn
−sLnd = Ln

Lncn
−s0d, s53ed

cn
+s0d = Ln

Lncn
+sLnd. s53fd

Solving Eqs.(53a)–(53f), we derive the recurrence rela-
tions

Rn−1,N = Rn−1,n + Tn,n−18 Ln
LnRn,NLn

Ln

· sI − Rn,n−18 Ln
LnRn,NLn

Lnd−1Tn−1,N, s54ad

Tn−1,N = Tn,NLn
Ln · sI − Rn,n−18 Ln

LnRn,NLn
Lnd−1Tn−1,N

s54bd

with Rn−1,N andTn−1,N defined according to

cn−1
+ =

def

Rn−1,Ncn−1
− ,

cN
− =

def

Tn−1,Ncn−1
− .

Equations(54a) and(54b) are the means by which we com-
pute the Bloch mode scattering matrices for an entire stack
sR1N,T1Nd. However, it is theoretically useful to formulate
the stack recurrence in terms of transfer matrices. The recur-
rence relations(54a) and(54b) manifest themselves in trans-
fer matrix form as

T̂n−1,N = T̂n,NT̂n−1,n, s55d

where T̂n,N denotes the transfer matrix of the composite

structure comprising mediaMn,… ,MN. The matrixT̂n−1,n,
denoting the transfer across the layer bounded by the upper
sides of theMn−1-Mn andMn-Mn+1 interfaces, is given by

T̂n−1,n = FLn
Ln 0

0 Ln
Ln
GTn−1,n

. s56d

Here, Tn−1,n is the transfer matrix associated with the
Mn−1–Mn interface, while the first matrix in expression(56)
is the transfer matrix associated with propagation across the
layer.

Accordingly, the transfer matrix for the entire stack is

T̂1,N = T̂N−1,N ¯ T̂2,3T̂1,2, s57d

whereT̂N−1,N=TN−1,N. The individual terms of Eq.(57) each
satisfy the reciprocity and energy conservation relations
(58a) and (58b)

T̂n−1,n
T QBMT̂n−1,n =QBM, s58ad

T̂n−1,n
H InT̂n−1,n =In−1 s58bd

introduced in the previous section, and thus the combination
of Eqs.(57) and (58) implies

T̂1,N
T QBMT̂1,N =QBM, s59ad

T̂1,N
H INT̂1,N =I1. s59bd

Realizing thatT̂1,N can be factored as in Eq.(46),

FIG. 3. Recursive coupling of grating stacks. An incident field
from above,c1

−, in semi-infinite stackM1, is reflected back into
M1sc1

+d and transmitted through theN stacks to semi-infinite stack
MNscN

−d.
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T̂1,N = FT1N RN18

0 I
GF I 0

R1N TN18
G−1

,

the relationships(59a) and(59b) can be used to establish the
symmetry relations

R1N
T = R1N, RN18T = RN18 , andT1N

T = TN18 s60d

and also energy conservation relationships for the stack
analogous to those of Eqs.(45a) and(45b). It can be shown
that all symmetry and energy conservation relations that hold
analytically for each interface and each layer are preserved
by the recurrence relations.

Accordingly, this prohibits the use of energy conservation
and reciprocity as valid physical tests of the accuracy of the
formulation in the case of an implementation in which the
grating scattering matrices already preserve these properties
analytically. In our case, where the multipole method imbues
the entire formulation with such properties, such tests are
valuable only insofar as they ensure the correctness of com-
putational implementation. It is therefore important to ensure
convergence of the method, which is dependent on the trun-
cation dimensions of plane-wave and modal fields(i.e., the
number of evanescent terms included)—the only real means
of validating results and comparing them against those ob-
tained by entirely different means. To this end, we have con-
firmed the accuracy of this method using results obtained
from a recently developed Wannier function method[22],
demonstrating agreement of results to better than 1 part in
1000.

IV. DISCUSSION AND CONCLUSIONS

We have developed the method in terms of the natural
basis of Bloch modes of individual PC layers and have
shown that the structure of the formulation closely mirrors
that of thin-film optics, with familiar scalar quantities such as
Fresnel coefficients being generalized to appropriate matrix
forms. While the theory presented here has been developed
for 2D structures consisting of uniform cylinders in an oth-
erwise uniform background, and operated in their fundamen-
tal polarizations, the analysis extends straightforwardly to
handle generalizations. Note that our derivation does not rely
on the refractive index distribution in the PC. The only dif-
ference is that for more general refractive index distributions
the scattering matrices cannot be obtained using the multi-
pole formulation; instead, methods such as those mentioned
in Sec. II A need to be used. The theory developed here also
extends to vector fields in conical incidence[27]. While the
scattering matrices and the form of the reciprocity and en-
ergy relationships become more complex, the overall struc-
ture of the formulation is then unchanged, as are the essential
results concerning modal reciprocity and modal orthogonal-
ity.

In developing the theory we have attempted to ensure that
the important physical concepts of reciprocity and energy
conservation are represented in their most appropriate, con-
venient, and physically intuitive form. In doing so, we paid
particular attention to the formal properties of the Bloch
modes and demonstrated key relations: one based on reci-

procity, valid even in the presence of loss[Eq. (30a)], and
another based on energy conservation, which is valid only in
lossless media[Eq. (30b)]. These lead to modal orthogonal-
ity and normalization relations which are important in nor-
malizing modes for subsequent calculations involving inho-
mogeneous media, examples of which are treated in Paper II.

As has been emphasized in Sec. II C, the orthogonality
relations derived here are completely different from those
associated with the usual Hermitian operator formulation
[43] of the eigenvalue problem. Such a treatment[43] begins
with a prescibed Bloch vector and generates as its eigenval-
ues the permissible frequencies of the modes. In our treat-
ment, the starting point is the selection of a frequency, with
the eigenparameters being the Bloch vectors and associated
Bloch functions. In passing, we observe that the transposi-
tion of the role of the eigenparameters makes the method
outlined here more amenable to the study of dispersive struc-
tures since the initial choice of frequency embeds the optical
constants of the materials within the formulation from the
outset.

It is interesting also to compare the orthogonality relations
derived here with those for the modes of conventional
waveguides, such as discussed by Snyder and Love[42].
These authors also identified relations reminiscent of Eq.
(30a) that are valid in the presence of loss and an additional
relation that holds for lossless media that might be consid-
ered to be equivalent to Eq.(30b). As mentioned earlier, the
skew-symmetric and Hermitian products in which these re-
lations are cast in our work are directly related to the cross
products and scalar triple products in the theory of conven-
tional waveguides.

There are, however, quite distinct differences in the nature
of the modes between conventional and photonic crystal
waveguides. In lossless media, the complete set of modes in
conventional waveguides comprises the bound modes, which
are discrete, radiation modes which are continuous, and eva-
nescent modes which are also continuous[42]. Here, the
bound modes and radiation modes have real propagation
constantsb, so that expsibzd, wherez is a propagation dis-
tance, always lies on the unit circle, while the evanescent
modes have complex propagation constants and correspond
to attenuation of the field as the mode propagates along the
waveguide.

For a lossless photonic crystal waveguide, all of the vari-
ous mode classes are discrete, but this is a consequence of
the finite size of the periodic supercell geometry, and is not
an essential difference from conventional waveguides. A
more substantial difference is that when a photonic crystal
waveguide structure is operated in a band gap, the mode set
comprises both propagatingsumu=1d and evanescentsumu
Þ1d modes. However, the spectrum contains no equivalent
of radiation modes, since the band gap guiding mechanism
provides for total field confinement—in contrast to leaky to-
tal internal reflection which characterizes radiation modes in
conventional guides. However, when a PC waveguide is op-
erated in a passband, the modes comprise a set that has the
characteristics of conventional radiation modessumu=1d and
a set of evanescent modessumuÞ1d. While the modes are
again discrete, it can be demonstrated that the number of
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propagating modes(i.e., with umu=1) increases roughly in
proportion to the length of the supercell period—a signature
that these modes are associated with a continuum of states in
the limit when the supercell period approaches infinity.

In our companion article(Part II), which deals with the
application of the method to two-dimensional devices, the
calculations have relied on the scattering matrices generated
by the multipole method[20]. While this is a proven and
efficient tool, it has obvious restrictions in terms of the range
of structures and geometries that can be handled. Irrespective
of this limitation, transfer matrix methods are well suited
[27,32] to a wide range of 2D and 3D structures as shown in
recent work by Liet al. [31,32] who derived efficient and
accurate methods for computing the necessary scattering ma-
trices. Accordingly, the key results of this paper concerning
both the method and the analytic properties of the modes
should readily generalize to 3D. While it is not within the
scope of this paper to develop results for fully three-
dimensional systems, we nevertheless observe that it is pos-
sible to establish results for such systems that are generali-
zations of Eqs.(15) and (23), and of Eqs.(30a) and (30b),
since these particular results follow directly from the under-
pinning physical considerations of reciprocity and energy

conservation. We note here that Eqs.(15) and (30a) follow
from reciprocity, a geometrical constraint that does not rely
on the material properties of the structure. On the other hand,
Eqs.(23) and (30b) follow from conservation of energy and
are thus appropriate only to lossless systems. In the case of
models of 3D photonic crystal slabs, in which absorbing
boundary conditions are needed to isolate adjacent super-
cells, we would expect to be able to establish the symplectic
nature of the transfer matrix but not the orthogonality prop-
erties.

Now that the details and the formal properties of the
method have been derived, the formulation is ready to be
used for solving propagation problems. Such applications of
the formalism to a number of different photonic crystal de-
vices are given in Part II.
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