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We present a rigorous Bloch mode scattering matrix method for modeling two-dimensional photonic crystal
structures and discuss the formal properties of the formulation. Reciprocity and energy conservation consid-
erations lead to modal orthogonality relations and normalization, both of which are required for mode calcu-
lations in inhomogeneous media. Relations are derived for studying the propagation of Bloch modes through
photonic crystal structures, and for the reflection and transmission of these modes at interfaces with other
photonic crystal structures.
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I. INTRODUCTION plane-wave methodglL6], beam propagation method$7],
. . transfer matrix methodgl8], layer Korringa-Kohn-Rostoker

Photonic crystals(PC_s) have become one of Fh‘? main- methods[19,20Q, Wanniglr 1]‘unc¥ion methgdﬁl,za, and fi-
stream research areas in contemporary opfigsThis inter- o clement methodi3].
estis fuele_d by the unique, _intrinsic properties of such struc- Although these methods often produce accurate results,
tures which resemble, in some respects, those ofey are entirely numerical in their approach and do not eas-
semiconductors. It has already been established that photonjg give physical insight into the underlying propagation
crystals have the ability to guide light along intricate pathsmechanisms. Despite the importance of this, thus far only an
without substantial diffraction lossef2]. Photonic crystal approximate semianalytic theory based on coupled mode
materials can also modify substantially the electromagneti@nalysis has appeared in Ref84,25. Recently, methods
density of stateq3] leading to their ability to control the based on the Bloch mode transfer matrix, or related tech-
emission properties of sources embedded in them. In particuriques, have emerged and generated int§B2526—-34. We
lar, they can completely suppress the density of states, thusave used the transfer matrix formalism in our method and
creating a “true vacuum” for electromagnetic waves. Thesaleveloped a semianalytic approach to the modeling of pho-
capabilities are ideally suited to the miniaturization of opticaltonic crystals based on the Bloch mode expansion. While a
components leading to ultracompact optical devices that calrief account of our method has been presefi83i34, this
be assembled onto a single photonic cfh and already an  Paper provides a comprehensive treatment of the method,
all-optical transistor based on the photonic crystal has beefnd of its underlying mathematical structure, which reveals
proposed[5]. Different components inside a photonic chip the limitations of the coupled mode methfith,25.
may be connected using complicated “wiring” networks The real strength of the method is its use of the natural

comprising waveguides with benf], Y [7] and T junctions (Bloch _mode) basis of functio_ns to describe the _prqperties of
[8], channel drop filterd9], as well as different types of photonic crystals. If we consider a plane wave incident upon

directional couplers10,11. In such complex microstruc- a photonic crystal, the incident field excites a field within the

tures, photonic crystals with different parametéssich as PC which can be expanded as a superposition of Bloch

: : modes. In many practical situations, however, only one or,
superprism$12] or Mach-Zehnder interferometeis3]) may mor nerall few pr tina Bloch stat tuall n-
be interfaced. The modeling of such devices thus requires ore generatly, a fevr propagating Bloch S1ates actuaty co

hensi d di f how PC devi | flibute to the far field of the device. This reduces the com-
compre ﬁnswe un ersta? Ing o _owl ewcde; cougJe Biexity of the analysis of the multiple scattering problem
one another or to external conventional wavegu(de$ and a4 in many cases, transforms the analysis of the PC to that

how light is guided within such devices. : ___of well known devicegsuch as generalizations of the Fabry-
The modeling of photonic crystals and composite deviceg interferometgrthat arise in thin-film optics.

built from these is a challenging task. The choice of optical The paper is divided into two parts: Part | provides the

materials and the geometry and scale of the structure makegy s theoretical foundation using the complete set of
the PC a strongly scattering environment in which it is NeC-odes while in Part I[35] we study a range of applications
essary to take into account many scattering events. Amon

h ical methods that I dt del P cluding waveguide dislocations, resonators, folded direc-
€ numerical metnods that are generally used 10 Model Fyqp g couplers, and coupled Y junctions, the calculations for
structures are finite difference time domain methdds],

which use both the complete mode set and also expansions
that are appropriately truncated.

In Part I, we begin in Sec. Il by establishing the Bloch
*Electronic address: Lindsay.Botten@uts.edu.au mode basis for a two-dimension@D) photonic crystal from

1539-3755/2004/18)/05660613)/$22.50 70 056606-1 ©2004 The American Physical Society



BOTTEN et al. PHYSICAL REVIEW E 70, 056606(2004)

the solution of an algebraic eigenvalue problem associated % _

with the transfer matrix. We then characterize the modes via (EeRte 29800 yI;yér
constraints imposed on the transfer matrix by reciprocity 00000 0OO0O0OOITSy =);2
and, for lossless structures, energy conservation. Each of 9.0000 D00PIDE:. =0
these imposes a pairing relationship which enables the set of 8 8 8 8 8 8 8 g 8 Spack o
all modes to be partitioned into downward and upward sets, 000000000 L, layers
with otherwise identical sets of propagation constants. These 10000000000 0y, _Ly)
conservation relationships also allow us to normalize and 0000 O 000 N
orthogonalize the modes, which subsequently enable modal 8888 8 8888 ; )

field quantities to be expressed in their physically most in- 000000000000

tuitive form. In Sec. lll, we analyze propagation in extended Rkl ODS eaiadss oy

photonic crystal devices by studying the basic building

blocks: propagation in a singlénite or infinite) uniform PC FIG. 1. Schematic of a photonic crystal structure formed by
medium, and the scattering and diffraction of Bloch modes ajoining stacks(M;—My) (here N=4), each consisting of identical

a single interface between two semi-infinite PCs. With re-grating layers. All layers must have the same supercell pddigd
spect to the latter, the action of the interface is characterizeBut the positions and properties of the cylinders within a layer can
in terms of Bloch mode reflection and transmission scatter@ll be different. Stack&1,-My_, containL, layers; stack#, and

ing matrices that are generalizations of the Fresnel coeffiMn are semi-infinite. Layer interfaces within each stack are num-
cients in thin-film optics. Finally, the extended structure isPeredn=0 ol

modeled in a recursive manner that exploits the two basic

building blocks described immediately above. In the com-two for reflection and two for transmission—are required
panion article, Part I[35], which deals with a range of ap- Since each grating may appear differently when viewed from
plications, we also study the asymptotics of far field calcu-2above or below. We note that for a simplep-down sym-

lations and justify the use of only the propagating Blochmetric) cylinder grating embedded in a rectangular lattice,
modes in that case. the symmetry of both the cylinder and the lattice enables the

grating to be characterized by a single reflection and a single

transmission matrix. In the treatment that follows, we denote
Il. BLOCH MODES AND THEIR CHARACTERIZATION the plane-wave reflection and transmission scattering matri-
ces of a single layer bR, T andR’,T’, with the two pairs
corresponding to incidence from above and below, respec-
avely. For example, the elemeR,, specifies the reflected
amplitude in plane-wave ordgrdue to unit amplitude inci-
dence from above in plane-wave ordgrThe tilde is used

A. Method and nomenclature

We consider a two-dimensional structure that comprises
set of stacksM,M,,...,My, each of which is built from
identical diffraction grating layers with a transverse period

D, Media M, and My are semi-infinite and represent the here to differentiate between the plane-wave scattering ma-

input and output domains for the problem. Whillg andM\ ) : . .
may be photonic crystals, they may also be any homoget-nces for a single grating layer, and those for a grating stack,

: . : which we introduce in Sec. Ill.

neous mediunge.g., dielectric or free spageor more gen- . . : . .
erally any periodic mediungprovided that the periods of all Gr?tlnghsgatterlng r‘?at_r Ices can ble computed W'rt]h avarr-
media are commaorfor which Bloch modes can be defined. ef[y 0 tep niques, inc uding integral equation methods and
Because of the gratings’ periodicity, the functional element d'gferent(')%::\/%ur”s\;e T;Z];ﬁglﬁsﬁii{; d?é?)?n\?vh?gﬁeirss.
of the structure are contained within a super¢sde Fig. }, i - up L .
the dimension of which is chosen to be large enough to enqpproprlqte to cylinder gratings, af?d which is an eff'c'eﬁ“
sure effective isolation from neighboring supercells Whencomputqtlonal toql. The sole proviso on the use of this
operated within a band gap of the bulk crystal method is that adjacent layers do not interpenetrate, thus al-

The periodicity imposed by the diffraction grating model !owmg the use of plane-wave field expansia@s at match-

means that individual layers are coupled together by plane'pg interfaces. Strictly speaking, the requirement that layers

wave diffraction orders, the directiorgg of which are given do not interpenetrat_e IS sufficien_t, bu_t not necessary. In fact,
by the grating equation’ provided that the interpenetration is not too severe, the

plane-wave expansions on the matching interfaces are still
. 27s valid. The issue is directly related to the Rayleigh contro-
Ksinbs=as=ag+ 5=, $=0,+1,+2,., (1) versy of diffraction grating theorj37] concerning the valid-

X ity of plane-wave representations for outgoing fields within
whereay=kg, is the component of the Bloch vector along the the grooves of diffraction gratings. In cases where layer in-
direction of periodicity of the gratings, arkd=2=/\ is the  terpenetration is a problem, it is necessary to abandon the
wave vector in the background medium. The integeia ~ multipole method as the means of computing the scattering
Eg. (1) run over a finite set of propagating orders, and ammatrices, replacing it by alternative techniques including dif-
infinite set of evanescent orders. ferential (Fourien, integral, or finite element methods.

In a PC, the action of each grating is determined not only For the cases to which it applies, the multipole method is
by its geometry, but also by the geometry of the lattice inarguably the preferred technique as the formulation is ana-
which it is embedded. In general, four scattering matrices—ytically elegant, and structurally embodies key properties
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[38] such as reciprocity and energy conservation analytically [} “R'T" R ﬁ,ff-l]
within the formulation. These properties can be verifiefi T= -
fectively) to within machine precision and the analytic pres- -T 'R Tt
ervation of these properties is inherited by the Bloch modes, = =11 o]+®
making the method both analytically tractable and easy to = {T R M~ B }
validate numerically. (O R T’
Here we introduce the eigenvalue problem defined by the def
transfer matrix and proceed in subsequent sections to classify Euzml_ (5)

the modes, and to derive important results that are used to
normalize and orthogonalize modes. These are needed in ofhe matricedd; andif, have a simple physical interpreta-
der to provide a suitable basis for field amplitude and energ§ion, relating the total field vectorf on either side of the
calculations that realizes the key properties of reciprocity an@rating layer to the incoming fields impinging upon the grat-
energy conservation in the most simple and elegant manndng. That is,

We begin by considering an infinite 2D photonic crystal, (1)-
operated in either_ of its two_fundame_:ntal polarizations. In the fi=Usfine o= Usfine Wherefi,.= [ (2)+} . (6)
background medium, the fields satisfy the usual Helmholtz f

equation The Bloch modes of the crystal then follow from the im-

position of the Bloch condition which leads to the eigenvalue
(V2+KA)V(r)=0 (2)  equation

where k denotes the wave number in the background me- Tt=ut, 0

dium. In the cases of TM and TE polarizations, respectivelywhere u=exp—-iky-€,),e denotes the basis vectors of the

the scalar functiotV denotes the single electric and magneticlattice formed by the gratings, ang=(ko, ko,) is the Bloch

field component that is aligned with the axis of the cylinders.vector with kox=ao=0, as described above. He®, is the

On the the upper and lower interfacgespectively denoted basis vector in the direction of translation.

by j=1, 2 in Fig. J of a grating layer, we expand the fields  While the transfer matrixZ is of fundamental theoretical

in plane waves as importance, it is of limited practical computational use be-
cause of the numerical problems that arise in the computa-

_ ” S L _ tion of the inverse of the transmission matrice’s Instead,
V() = X ) VAFD e ) + (DY), (3)  the eigenvalue problem is solved by transforming it to more
s robust forms[27,28§.

Any practical solution requires the truncation of the infi-
whereas is defined in Eq(1), xs= Vk?— a2, with Im(x9) =0,  nite plane wave serie), resulting in transfer matrices of
and they; are the heights of the reference interfacsse Fig. even dimension. It is then possible to partition the solutions
1). While such plane-wave expansions are strictly valid onlyof Eq. (7) into equal numbers of downward and upward
for noninterpenetrating layers, the solution for interpenetratpropagating modes, with the actual nature of the pairing dis-
ing layers may be constructed by envisaging infinitesimakussed in Sec. |l B. For the present, we observe that for
thickness interfaces of background material, separating theonpropagating state$|u|+ 1), which carry no energy
grating layers, in which these plane-wave expansions arthrough an infinite crystal, their directionality is character-
valid. Accordingly, we characterize the plane-wave fields aized by the direction of their decay—downwdyd <1, and
the interfaceg by vectors of plane-wave coefficients of the upward|ux|>1. The directionality of the propagating states
form f<j)1:[fg)1], associated with the subscript and super-|u|=1 is characterized by the vertical component of group
script entries in the field ternd?)(r). velocity vg, of the mode. Since the group velocity and the

In the design of PC devices, the entire structure is genef€nergy flux (£y) normal to the grating are related Hf
ally operated in a band gap. The use of a plane-wave methddvgp (Where & is the energy densijy it follows that
thus necessitates that the lateral sixeof the supercell be Mmodal directionality can be inferred from the sign of the
sufficiently large to isolate device components. Provillgd ~mode flux&s [26], with positive and negative values, respec-
is large enough, this isolation renders the calculation essetively, denoting downward and upward propagatifs8].
tially independent of the value af,. For convenience, the Here,
reasons for which become apparent later, we chegse®.

— fH —¢H _fH _i(fH _fH
The transfer matri26,29 relates the fields; on either Er=1Tpwt =l b = ol of, —i(F215f, —F150), - (8)

side of the grating according to the relation where
f0)- _ I il
- - Tow=|.__ , 9
f,=Tt; wheref; = L“”] (4) PW Llp -, 9)
with |, denoting a diagonal matrix whose rows and columns
and designate the plane-way®W) channels and whose values

056606-3



BOTTEN et al. PHYSICAL REVIEW E 70, 056606(2004)
are 1 for propagatingi.e., nonevanescenplane waveg s 0 Q
real) and O otherwiselz=I -1, is its complement, containing Qpw=| _ 0ol (14
unit diagonal elements only for the evanescent plane waves.
With the modes now partitioned can be written in its  Here, Qp,, denotes the reversing permutation which is de-
diagonalized form rived by reversing the order of the rows of the identity matrix
[. In Eg. (13), the fields represented ky andf; are both
T=FLF, (100  plane-wave series of the for), for the same value d,
the coefficients of which are the entries of the respective
a result that encapsulates the entire family of eigenvalugectors. The relevant generalized inner proddd), in bi-
equationsZF=FL from Eq.(7). In this representationF  linear form in this problem, is skew symmetric, i.e.,
is a matrix, the columns of which are the eigenvectorgpf ngQPij:—ijQprj, mirroring the properties of the cross
and L is a diagonal matrix whose entries are the correspondproduct which is inherited from Maxwell’s curl equations.
ing eigenvaluesu. In the light of the eigenvalue pairings Note that the choice ofyy;=0 ensures that the plane-wave
discussed above, we may partitidfiand £ as follows: basis in whichV; andV, are expanded is common to both
and also orthogonal, thus leading to the bilinear form in Eq.

_|F- FL A0 (13).
F= F, F.| L= 0 A (11) Thus_, the s_kew-symmetric inner prod@tgpwf_is con-
served in that it has the same value on each grating interface,
with the columns of the matricds; ,F. formed from thef - I.e.,
components of the eigenvectors for the downward and up- T T
ward modes, respectively, and withandA’ being diagonal 91 Lewl1 =92 Lpwf2- (15)

matrices containing the corresponding eigenvajue®r the 5 ovina the transfer equatiorss =74, andf.=7%.. it then
downward and upward propagating states. For convenienc%ﬂg\xls ?hat q B2= 2 2 b

the modes are ordered with propagating modes, i.e., those for
which |u;|=1, listed first. (T Qpw T~ Qpw)f1=0.

Observing thaf; and g; may be expressed in terms of the

incoming fieldsf;,. andgj, via f1=U;f,. andg; =U Gine, We
Important results that characterize the modes may be deleduce

rived from the physical concepts of reciprocity and energy

conservation. In this section we focus on the former, a geo- Ind A1 (T QpwT — QpwUfine=0. (16)

metrical constraint that holds for any nonmagnetic material, ) o i o

and show that it constrains the transfer matrix to be symplecIhen, since the incident fields may be chosen arbitrarily and

tic and enforces a pairing of downward and upward states.U1 i nonsingular, we deduce tha must be symplectic
The derivation follows from the application of Green’s [39l—a common nomenclature for the result

theorem
T'QpWT=TQpWT = Qpw,

B. Mode characterization: Reciprocity and symplecticity

aV, aV
2y _\/.v2 = 202
# VoV Vi = ViV Vg dA= 3§ (Vg an o )ds or 7= QeuT ' Qply 1)

(12 with respect to the generalized inner prod(3) defined in

_ . terms of the skew-symmetric matri@p, (14). This sym-
around the supercell grating layer. The fieldsandV, both  hjacic structure is a natural reflection of the reciprocity theo-
satisfy the Helmholtz equation with the same valu&kodn .o and holds even when material losses are present.
the interfaceg=1, 2 of Fig. 1(above and below the grating SinceT™ and 7! are related by a similarity transforma-
layen the fields are represented by plane-wave expansiong,, (17), the eigenvalues of", namely,x, and the eigen-
(3) associated with vectors of field coefficients. Since the 4 es of 7%, namely, ™%, must be paired. In particular, if
area integral in Eq(12) vanishes and the field periodicity w is the eigenvalue of a downward propagating state, then
(ap=0) cancels contributions to the line integral at the edge%—l is the eigenvalue of the corresponding upward propagat-
of the supercell, it follows that the line integraly) over jnq state. From this it follows that eigenvalue matrideand
the upper and lower surfacé§, j=1, 2, are identical. That A’ of Eq. (10) are related byA’=A"1.
is, Ir(y1) =Ir(y2) where Some aspects of the structure of the eigensystem emerge
when the diagonalized form & (10) is applied to the sym-

1 (P oV aV, i i
Ir(y;) = ﬁf (Vga_yf - Vfa—yg> dx= ngprfj, plectic property ofZ (17) to derive
xJo Y=Y, LF QowFL =F QpyF.
(13
Observing thatFT QpyF is antisymmetric and than’
with =A%, it is easily shown that
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0 | (5F:fl-HIprj) corresponding to Eq21) with g;=f;.
FTQpyF = {_| 0} = Qs (18 The conservation offi-(y) on each interface implies
after scaling the columns oF appropriately. HereQgy, is 0 Zpuf1 = &5 Zpuf2, (22

the Bloch mode equivalent of the matri@py, which was
defined with respect to the plane-wave basis.

Key reciprocity relations for the constituent grating layer
mhay 3Iso be deTrived when ¥ve substitutﬁ Eq.int]? Eq.(17), TN T T - Zpwf =0.
thus derivingd, Q pw>=U; Qpwld;. When all four matrix ) ) _
partitions of this expressioln are expanded, we arrive at thEroceeding as for Eq16) and expressing, andg, in terms
reciprocity relations for the scattering matrices of the singled! incident fieldsfi,. and gi,c which may be chosen arbi-

and this together with the transfer relatiolys-Zt, and g,
=70, yields

grating layer, namely. trarily, we determine a new conservation relation for the
' ' transfer matrix, namely,
BT —ADP DIT—AD/ T — AT
R'=QRQ, R''=QR'Q, T''=QTQ. (19 THTowT=Tpw. (23

As mentioned, the relationship$9) hold analytically within
the multipole formulation that is used to compute the scat
tering matrices[38]. The symplectic nature off; and the
eigenvalue pairing18) that follows from this, are thus sat-
isfied independently of the multipole truncation limits of the

code that generates the scattering matrices. Therefore, Eq%rms characterize contributions to energy related quantities

(17) and(18) hold to within (effectively) machine precision o ; B}
in our computational implementation. We conclude by ob-ggzg}igr]gom evanescerthonpropagatingplane-wave order

serving that with alternative methods of computing the grat- Explicit forms for the energy conservation relations that

Ing Iayer scattering matrices, .spec[flcal_ly those that do noct:ll’e satisfied by the grating reflection and transmission matri-
analytically conserve the relationships in E&9), we may ces may be found by substituting the representatn

exploit th_ese relationships as tests of the convergence of th:euzbql (6) for the transfer matrix into Eq23), thus deriv-
computational method. :

ing

While relationships of this type have appeared in the litera-
ture associated with electron conductance in thin wires
[40,47, this electromagnetic form differs significantly from
the electronic form through the presence of the terms de-
noted byl in the off-diagonal partitions ofp,y (9). Such

. _ U Ty =U T U,
C. Mode characterization: Energy conservation and 2Zewtty 1wt

orthogonality By expanding all four partitions of this matrix relation we

In Sec. Il B, we used the geometrical constraint of reci-d€"Vve

procity to investigate the structure of the transfer matrix as-
sociated with the eigensystem of E{J). Here we further
explore the properties of the eigensystem, demonstrating that o _
energy conservation and modal orthogonality relations hold RALT +TH R =iT I5=il5T, (24Db)
analytically within the formulation.

For lossless systems, Green'’s theorem

— oV, —aV
0= # (ViVAV, - VY2V dA= 35 (wﬁ—q V, f)ols

RMILR+THILT =1, +iRMI5—il5R, (249

RMLT+ T R=iT Hig—ilgT, (249

n Yan RIMILR +T'H T/ =1,+iRM5=il5R, (240

(200 which are succinctly summarized in the form

yields a further conservation relation that establishes or- 10 10 = 0 = 0
thogonality relationships for the modes. Note that the left SH[ P } —{ P ] isH| P -il ? )
hand side of Eq(20) vanishes only for lossless systems and 0 1p 0 1p 0 Ig 0 Ig

that field periodicity cancels contributions to the line integral (25)
at the edges of the supercell. It thus follows that the line

integralslg(y) over the upper and lower interfacgs, j=1, where

2, are identical. That idg(y1) =1g(y,) where R T
L = s=|_ _ (26)
1 x oVy —dV T R’
le(y)) = 5D f (Vfa_g - Vg&_f) dx= g}-'IPWfJ' . . .
IDxJo y y vy, denotes theS matrix of the grating layer. Since these rela-

(21) tionships hold analytically within the framework of the mul-
tipole formulation[38], Egs.(24), and all properties that fol-
with Zp,, defined in Eq.(9). The bilinear formgHZpf low from these, hold analytically, independent of the
in Eq. (21) is simply a generalization of the energy flux truncation of the multipole series for field quantities in the
of Eqg. (8), with the downward flux of the plane-wave field determination of the scattering matrices. Equati@®—(25)

056606-5



BOTTEN et al. PHYSICAL REVIEW E 70, 056606(2004)

can therefore be verified numerically, effectively to within . 0
machine precision. F QpwF = 0
We now use Eq(23) to establish the orthogonality rela-
tions for the Bloch modes. Recall that in Sec. IIB we | |
showed that the eigenvalugsand u ! were paired because —Im
g peant w ’ fHIPW-F:l”m ]:IBM-

0} = Qswm» (308

of the symplecticity ofZ (17). A further eigenvalue pairing (30D)

relationship can now be established from E§3), 7H
=ZpwZ Zpy, which reveals thaZ™ and 7! are related  In Egs.(30), them subscripts refer to the propagating Bloch
by a similarity transformation. Thus, for lossless systems foimodes in mediunm, whereasm refers to nonpropagating
which Eqg.(23) holds, the eigenvalueg and u* are also Bloch modes, and
paired, where the overbar denotes the complex conjugate. 5
m;nl,nz - {

m _Im

Combing this with the pairing implied by the symplectic nin, for propagating states,
property(17) of 7, we see that the eigenvalues®falways 0 otherwise,

occur as a quadruple comprising , ™, z™. For propa-

gat.ing modegfor which w=u"1) or evanescent mode;s for fo if n, or n, denotes a
which u may be realas may occur for rectangular lattiges )
this quadruple degenerates to a simple pairing relationship. propagating state,

The structure of the eigensystem and the nature of the 1 if n; =n, andn, denotes an
orthog(_)nality relations the_n follows by substituting the di- evanescent state with
agonalized form forZ (10) into (23) to reveal I minn :< .

T2 areal eigenvalue,
LFNToWFL= FiZpwF, (27) 01| . _
10 if n; andn, are a conjugate
noting also thatA’=A"* from the discussion above. Then, _
observing thatF"ZpF is Hermitian, and writing \ evanescent pair.
A B Observe that relation80g and(30b) involve all possible
FLoWF= { y ] (29) modes—both propagating and evanescent. We now consider
B" D the implications oforthogonality relations(30b) by what

these reveal for individual propagating or evanescent states.
Specifically, for two downward models and f,,, we have
1 Zowfm= &m if both are propagating arfff Zpyf,,=0 for all
other combinations of propagating and evanescent modes. In
;ggrticular, we note that the zero diagonal elements associated

it follows, by expanding the partitioned forn27), that
AAA=A,ABA™*=B, and A"'DA*=D. From the first of
these identities we see that that this requitgs 1w um—1)
=0 for all I,m. Since |w|=1 for propagating states and
|w|<1 for evanescent states, we can see that the eleme
A, can take nonzero values only on that part of the diagon
of the matrix(I=m) that corresponds to propagating modes
Furthermore, sincé is Hermitian, these diagonal entries ¢iHz ' - for all other combinations. The most interesting
must be real and thus we wri=A, indicating that the a4 nysual of these relations are those associated with the
matrix has a diagonal form with nonzero entries associateg,nescent coupling of a downward and an upward mode.
with the propagating modes. The same arguments lead us [Qqre e see that with andf!, respectively, denoting down-
deduce thaD takes the same form, i.D=D,, Finally, for ward and upward propagating statEpEIPWfr'n:—i 8, if both

g_’ we see that its elements must satify,(i/um=1=0. 546 are evanescent, ddZ\f! =0 for all other combi-
ince the eigenvalueg; occur in the quadruple discussed [ 5ions.

above, we can make the tel_(lﬁl,um—l) vanish by selecting In Sec. Ill, we develop models for propagation in

I andm such thal(z)) = puy. Since thew, are chosen from the  yitilayer PC devices, deriving expressions for various en-
set of downward propagating modes, this constraint can bgygy quantities and developing relationships based on reci-
satisfied only for evanescent modes. Furthermore, by exyrocity and energy conservation that are used to validate the
panding the left hand side of E(28), we see thaB must be  formalism. The use of an appropriately normalized modal

skew Hermitian and we deduce tHa&-iB;; whereBgisa  pasis is of paramount importance and the relati(3&a),

real blpck diagonal matrix with nonzero _entries associateqyhich expresses the normalization imposed by reciprocity,
only with the evanescent or nonpropagating modes. Thus, and (30b), which constitutes the orthogonality relations, are

th the evanescent modes imply that such modes carry zero
lux. Similarly, for two upward propagating stat§sandf;,
‘we have f{"Zpufl =-6,, if both are propagating and

) precisely the forms that are needed to ensure the representa-
FHT = Am ~1Bm tion of physical quantities, such as field amplitudes and
pwF=|. (29 . L :
iBn  Dp modal fluxes, in their simplest and physically most amenable

forms. With the modal basis normalized according to Eq.
Combining both Eqs(18) and(29), and scaling the columns (30b), we can express mode fluxes in a manner that is struc-
of F appropriately, we can write down the normalized rela-turally identical to that which applies to plane waysse Eq.
tionships satisfied by the modéwhich comprise the col- (35)] and which, in the simplest case, corresponds to com-
umns of F) puting the square magnitude of a modal amplitude. Further-
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more, the normalization of Eq30g enables all reciprocity
relations for modal scattering matrices to be expressed in
terms of simple matrix symmetry relatiofs.g., Eq.(51)].

In concluding this section, it is important that we differ-

r——-N = 0

entiate clearly between the orthogonality relations developed n
here and the more familiar orthogonality relationships that
are satisfied by the modes of the operator eigenvalue equa-
tion [43] OO0 00 I
1 o2 c4(n) = AFc,
OH(r)=V X|{——V XH(r)|=—H(). (31
e(r) c L-n

In computing the modes from the eigenvalue problem of Eq.
(31), the eigenvalues of which are the permissible frequen-
cies w of the modes, we select a Bloch vectgrand deter-

mine a basis of modes, the orthogonality of which follows

from the Hermitian property of the operatr In contrast, in andc,(n) defined at interface in a stack of length_ in terms of

our derivations above, yve select the frequeroy wave- Bloch modes sourced, respectively, from the interfaces abaye
length), and solve the eigenvalue problem for the transfer,q below(c,) the stack.

matrix (7) to determine the Bloch vectors of the modes. This

set of modes is complete and forms a basis in which we can ion for th flux in t f Bloch mod ¢
expand electromagnetic fields. However, as is evident frong:pressmn or the energy Tlux in terms of bloch mode coet-

LN = L

FIG. 2. Downward and upward Bloch mode amplitudeén)

the discussion and derivation above, these modes are n rt:ients. Knowledge of these plane-wave quantities enables

orthogonal in the conventional sense, due to the presence € calcula’;ion of the energy flux through the layer an_d the
the matrixZpy (9) in the defining inner’ produgZpyf that reconstruction of the field within the layer. For the multipole
PW PW

derives from flux consideration®1). While the matrixZpy methodkthatlw(;e usef tt?] generate thel grating SC?ttﬁjr'n,? matrrll-
is Hermitian, it is not positive definitéhaving distinct eigen- ces, a knowledge ot the Incoming plane-wave Nields to eac

values of +) and thus cannot define a true inner product.grating layer enables the calculation of the multipole source

Moreover, it is the off-diagonal blocks @, that are asso- coefficients[20] for the cylinder grating. From this, the total
' PW ield can be computed as the superposition of the incoming

ciated with paired evanescent order propagation of energI ) . .
which preclude the existence of an orthogonality relationshi Iane-que f|e|ds. and the outgoing scattered field expressed
n a multipole series.

that is analogous to those satisfied by Hermitian operatoré.

While the orthogonality relationships derived above are im- Frcc;m. F'g'b 2t the 'pr:.erfaﬁe?:c.) and rt1:|L tderllote éhe
portant for the normalized representation of field quantities, oundaries between this photonic crystal stack and some
ther medium(such as another PC, free space, dielectric,

they do not assist in the computational solution of the fieldot Th ; ivel £ 4
problem which requires the inversion of dense matrices. elc). These surfaces are respectively sources of forwarn

(downward and backwardupward propagating modes re-

spectively. At some interfaag the coefficient vectors for the

IIl. PROPAGATION IN PHOTONIC CRYSTAL downward and upward plane-wave fields used in the expan-
DEVICES sion (3) are

This section focuses on the solution of propagation prob-

lems in extended photonic crystal devices comprising a num- f_(n) F_ F!

ber of PC stack$!;,M,,...,My, as in Fig. 1. It commences f(n) = [f+(n)] = L:+ ]C-(n) * L:r 1C+(n) (32
with the formulation of the problem in a single PC medium ’

and then analyzes the propagation of Bloch modes across al .
interface between two semi-infinite PC media, introducingwrhere c=(n) denote the a_1mpl|tudes qf th? downward and
Bloch mode scattering matrix generalizations of the usuaW:’W"’lrdT BIOC? Tmodes at interfage as in Fig. 2, and(n)
Fresnel reflection and transmission coefficients. These twﬁ[c—(n) c.(m’]". Since the downward ar'ld upward Bloph
threads are then drawn together to solve the propagatiofodes traveln and L-n layers, respectively, frr?m their
problem in a multi-layer structure. The tools derived in Sec.SOUrces at the upper and lower boundaréesy) =A"c. and

Il are exploited to derive elegant forms for the reciprocity C+(N=A""c,, wherec; denote the amplitudes of the down-

and energy conservation relations. ward and upward Bloch modes at their origifiSig. 2).
Hence,

A. Propagation in a single photonic crystal medium
. . o . f(n) = Fc(n), (33
We consider the propagation of light in a medium com-

prising L layers of a finite photonic crystal structure. We
derive expressions for the plane-wave fields at successi
interfaces between the grating layéns=0,1,...,L) (see Fig.

1) in terms of the Bloch mode expansions, and derive an c(n) = L(L,n)C,

\)@here
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+

A" 0 _ |c(0) c. tion through a uniform laye(Sec. Il A) and the diffraction
L-n|» C= = (34)  of the field at the common interface of two successive PC
0 A c.(L) ; . .
layers. Here, we consider the reflection and transmission of
Once the Bloch mode coefficients coefficientsandc, are  Bloch modes at the interface between two semi-infinite me-
known, thenf(n) can be computed for each interface, thusdia M; and M,, and derive the photonic crystal analogs of
enabling the field within each layer to be reconstructed fronfresnel's reflection and transmission coefficients. The

L(L,n)= {

a knowledge of the incoming fieldse., f_(n),f,(n+1)]. Fresnel coefficients are now Bloch mode scattering matrices,
We turn now to the energy flux carried by the Bloch with the domain and range of the transformations defined by
modes which, at each interface, is given by E): the Bloch modes of the input and output media.
H The interface betweeM ; andM, is a fictitious line that is
&x(n) = (N Zpwf(n) the boundary between a grating layer in each medium. Since
= (MM FHTpy Fe(n) all field components are continuous on this line, both the
upward and the downward propagating fields must be con-
= c(n)"Zgyc(n), (35 tinuous across the interface. Denotingfyandf, the fields

. T . (4) on either side of the interface, we can express field con-
where the final simplification relies on the modal orthogonal-tinuity by the relation
ity relationship(30b) and yields the Bloch mode equivalent y

of the plane-wave flux expressidi8). Expanding this ex- def F- =5 F '
pression, we see that the energy flux at interfads given fi=Fic = 1 c+ 1, c = f 5 2, (o
by 1 Fl F2 F3
— def
gy = 2 [le-()iP=le.n)PT=i 2 [e-(n)jc.(n); = Fyeo=f,. (38)
jeQm jeQm

— In Eq.(38), thec]-I denote vectors containing the Bloch mode
~ cu(mje-(m);, (36)  coefficients at the interface in regidn Note that these are

where(),, is the set of propagating modes, afg is the set the same vectors referred to in the previous section-as

of nonpropagating or evanescent modes. The first sum in Eqow defined for each distinct regign

(36), over the propagating modes, is the difference between We now define the generalized Fres(@loch modg re-

the modal fluxes for the downward and upward propagatindlection and transmission matrices by the relations

states. Note that the normalization imposed through Eqg. def

(30b) enables propagating mode fluxes to be computed di- C;=RyC] + T5,C5, (39
rectly from the square magnitude of the modal amplitude.

The second series is a sum over the evanescent modes and def

expresses the flux contribution due to coupling between the C;=T1C1 + RSG5, (40)

downward and upward evanescent states.

We return now to the calculation of the flux in dudayer
medium and substitutg(n) =L (L, n)¢ from Eq.(33) into Eq.
(35) to derive

which express the Bloch modes that are outgoing from the
interface in terms of the Bloch modes which are incident on

the interface. The Bloch mode scattering matrices are set in a
sans serif typeface so as to distinguish them from the plane-

—~=H ~ wave scattering matrices which are presented in the standard
&) =C L LM TeuL (L roman typeface. Solving Eq38) and expressing outgoing
He H I - iIaAL T fields in terms of incoming fields then leads to the following
=[S A » ~ |- (87  expressions for the Bloch mode reflection and transmission
m m G matrices:

As expected, the flux is independent of the lagea result ol — ~

which relies on the eigenvalue pairings, discussed in Sec. R12=(F1 )7 (I =RoR) (R~ RyFy, (41a

[l B, which constrain the eigenvalues to be real or to appear

in conjugate pairs. Note also that as the lengtbf the me- Tio= (FE')—1(| -R;jRy) ™I -RJR)F7, (41b)

dium increases, the influence of the evanescent order cou-
pling diminishes since the evanescent states have eigenva¥here
ues|u|< 1. Accordingly, for an infinitely long structur@.e., R P
L— o), Eq. (37) reduces t& o _[€, [*-[€,% the differ- Ri=F1(FD™ Ri=Fi(F1)™ (410
ence between the downward and upward fluxes with thén Egs. (418 and (41b), we see that the domain of each
summation taken over only the propagating states. Thus, imatrix R;, and T, is the space spanned by downward propa-
this limit, the evanescent mode pairs can carry no power. gating modes inM,, while their range is, respectively, the
space of upward propagating modesMn and the space of
downward propagating modes M..
Corresponding expressions f&;, and T;; may be ob-
Propagation through a heterogeneous photonic crystdbined from those foR,, and T, by transposing the media
stack can be regarded as an alternating sequence of propagee., swapping the medium identities denoted by)l{rans-

B. Coupling semi-infinite photonic crystals
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posing the directionality of the plane wavés., swapping acterized the reflection and transmission of an individual
the directions +,; and transposing the directionality of the grating layer. That Eqg25) and (45) take exactly the same
Bloch modegq(i.e., replacing primed quantities by unprimed form is a consequence of correctly normalizing the Bloch
guantities and vice verga modes according to orthogonality relatigBOb).

In EQ. (410 R, denotes the plane-wave reflection matrix ~ There exists a useful, alternative representation of the re-
that characterizes reflection of a plane-wave field incidensult (45) in terms of a Bloch mode transfer matrik;, that
from above on a semi-infinite crysti,. The expression for characterizes mode propagation acrossMheM, interface.

R, follows from the consistency condition between incidentFrom Eq.(43a we have
and reflected plane-wave fieldsandr and the downward

Bloch modes Cr= ’1-1201 Where’le = U2U11. (46)
{5} l,:l} The flux conservation relatio@2) then implies that
— C_,
rl LR THI, T:o=T,, (47)

which, oncec; is eliminated, yieldsr=Fj(F])™8, from  a form which is equivalent to the energy conservation rela-

which R; can be inferred. CorrespondingR, is the reflec-  tions in Eq.(453.

tion matrix for the same PC, but this time for plane-wave The existence of an energy conservation relation for the

incidence from below. interface transfer matrix45), which is very similar to that
We turn now to the energy and reciprocity relations satisfor the corresponding plane-wave transfer matrix relation-

fied by the Bloch modes to derive corresponding constraintship for a grating laye(23), suggests a modal equivalent of

for the generalized Fresnel matrices. In Sec. Ill A we showedhe symplectic property off (17). This relation leads us to

that the flux across an interfa¢gbs) is the reciprocity relations satisfied by the interface reflection
h h and transmission matrices. The reciprocity relations for the
€1=C1L1C = 5y, (42)  interface reflection and transmission matrices follow from

provided that the modes are normalized according to Ecthe conservation of the skew produciQpyf in Eq. (15),
(30b. Here, Z,, is the modal matrixZgy [defined in Eq.  wheref andf correspond to two distinct scattering problems.
@’Ob)]’ but th's. tlmg subgcrlpted by tq de5|gr_1$t?Tthe Me- We define plane-wave scattering quantimpandf- on either
dium m to which it applies. Expressing;=[c;'ci']" and  gige of the interfacgj=1, 2. These we expre]ss as linear
c,=[c;'c;']" in terms of the modal fieldy that is incident  combinations of Bloch modes in terms of Bloch mode coef-

on theM;-M, interface, we have ficients appropriate to the region which, in turn, are ex-
¢ =UiChe €= UsCie, (439 pressed_ in terms of the incident Bloch mode figii3a). We
thus write
where .
) CI ) | 0 ) le Rél fJ = f'lC] = ‘7:jUjCinc andfl‘ = :F'jUjCinc- (48)
Cre=l " Y15 R 1| 27 o 4 | The conservation of the skew-symmetric inner product
2 12 21 . . e
across the interface thus imposes the condition
(43b) T 1 TT T T 1 TT T
Cin U F. F1U1Cinc = CinUpF. F>U5Cines
After substituting Eqs(43a and(43b) into the conservation ineU171 LpwF1U1Cine, = CincU2 2 L 2UzCine
relation (42) and allowingc;,. to be arbitrary, we deduce (49)
utz,u,=Ulz,U,. (44)  which implies that

Expanding all four partitions of Eq44) and recombinin 0 1
P g P 444 g U7 QewU,=U] Qe WhereQBM:[ ]

them into a standard form yields the conservation relations -1 0
summarized by (50)
H — . H —_— .
ST125 =112 +1ST 121158, (459 after observing that;,. andc;,. may be arbitrary and that the
where modes in each region are normalized according to the reci-
, _ procity relation(30a. Here, Qg is the Bloch mode equiva-
S= Riz Ty Loz Il O o lent operator to the plane-wave for@pyy, but this time for
T, Ryl 2710 1,]" 2o 1] the Bloch mode basis.
(45b) Now expanding all four partitions of E¢50) we deduce

the reciprocity relations for the generalized Fresnel matrices
Here, S is the S matrix associated with the interface T _ T o T _
modal reflection and transmission matrices, whilds the R12%Riz Rz =Ry andTy,=Ta, (53
identity matrix for real propagating modes i andljisits ~ which may be simply summarized in the fo®1=S. Thus,

complementlj=1-1;) for the evanescent modes ;. The  reciprocity implies scattering matrix symmetry, provided that
result(45) has precisely the same form as the correspondingve operate with our basis suitably normalized according to

result(25) for the plane-wave scattering matrices that char-Eg. (309. Finally, by rearranging Eq50), we may obtain an
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Stack My (semi-infinite) Ch(0) = Afnch(Ly). (53f)
(o7 ¢t =Ry C; . .
! 1 T Lo Interface 1-2 Solving Egs.(53a—(53f), we derive the recurrence rela-
Stack M2 tions
Ro-in=Rpoin+ Th i AFR, (AL
. 1 . n-1,N n-1n n,n-1*n "¥*n,N‘¥*n
e/ . | Chi=FRain Cay _
2 Alntertace (n-1)n (=R AR WA Ty, (548
Stack Mp
— L L Lyy—1
Tr-an=TanAL - (1= Ry ASRANAL) T Thog N
> Stacks Mp - MN (54b)
Stack MN-1 ) . .
G=Tw & with R,_; ny andT,_; y defined according to
; : :
Stack Mp (semi-infinite) b def

Ch-1= Rn-1nCh-1s
FIG. 3. Recursive coupling of grating stacks. An incident field

from above,c;, in semi-infinite stackM,, is reflected back into def

M,(c]) and transmitted through the stacks to semi-infinite stack Cn= Tr-1NCh-1-

Mn(cy)- Equationg(54a and(54b) are the means by which we com-
pute the Bloch mode scattering matrices for an entire stack

equivalent transfer matrix form of the result, i.e., (Rqn, Tqn)- However, it is theoretically useful to formulate

I T.= 50 the stack recurrence in terms of transfer matrices. The recur-
1228m712= - (52 rence relationg54a and(54b) manifest themselves in trans-

We conclude by observing that the results stated in thider matrix form as
section hold to within machine precision since the underly- A A A
ing properties hold within the multipole method that is used Toan=TonTo-1n (55)
to calculate the scattering matrices. It can be shown via a - . .
lengthy analysis that these results propagate through the on‘-’here Ty denotes the transfer matrix of the cpmposﬁe
mulation to yield the corresponding results for Bloch modestructure comprising meditf,,, ..., My. The matrixZ;,_; ,
quantities derived above, independently of any series trunc&lenoting the transfer across the layer bounded by the upper

tion errors in the calculation of the grating layer plane-wavesides of theM,_;-M, andM-M,; interfaces, is given by
scattering matrices. Al 0
0 ALn T:I—l,n' (56)
n

C. Recursive coupling of stacks n=1n~—

The properties of !inear devices comprising a sequence qI|ere, T, .. is the transfer matrix associated with the
heterogeneous media can be calculated through recurren M, interface, while the first matrix in expressigs6)

rela.tlons for the reflection .and transmission properties. W‘?s the transfer matrix associated with propagation across the
outline the process by adding the staddk indicated in Fig. layer

3, thus deriving the Bloch mode scattering matrices X : ; . -
Ru1n Tot  frOM Ry, Tos WhereR,, m andT,  represent Accordingly, the transfer matrix for the entire stack is
the Bloch mode reflection and transmission matrices for a '3—1N=%N—1N""i'23§'1 ” (57)
stratified structure comprising stackg,,M,.1,...M, for ’ ' oo

downward incidence irM,, upward reflection inM,, and Wherei'N_lN:'z'N_l «- The individual terms of Eq’57) each
downward transmission iMp. Now, at theM,,_;-M, inter-  satisfy the reciprocity and energy conservation relations

face, we have (589 and (58b)
Che1= Rne1nChoy + Thn-1€n(0), (534 ﬁ_anBMﬁ'n_ln: (o T (583
Cn(0) = Tro1nChg + Rppo1Ch(0). (53b)

- . . T n Lo T 10 = Lo (58b)
Similarly, on the upper side of thiél,-M,,, interface, _ _ _ _ o
introduced in the previous section, and thus the combination

(L) =Rpncn(Ly), (530  of Egs.(57) and(58) implies
hile the t ission int diuMy i db - -
while the transmission into mediuiy, is expressed by T Qo Tin= Qon. (598
&= TanGo(Lo), (539) -
where TININT =T (59b)
¢, (Ly) = AL (0), (539  Realizing that‘i’l,N can be factored as in E46),
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A Tin Ry I 0 |1 procity, valid even in the presence of logsg. (30a], and
INT 0 | Ry T , another based on energy conservation, which is valid only in
N1 lossless medi§Eq. (30b)]. These lead to modal orthogonal-
the relationship$59a and(59b) can be used to establish the ity and normalization relations which are important in nor-
symmetry relations malizing modes for subsequent calculations involving inho-
- T , - , mogeneous media, examples of which are treated in Paper Il.
Rin=Rin,  Ryp=Rpg andTy =Ty (60) As has been emphasized in Sec. Il C, the orthogonality

and also energy conservation relationships for the stackélations derived here are completely different from those
analogous to those of Eql5 and (45b). It can be shown associated wlth the usual Hermitian operator formglanon
that all symmetry and energy conservation relations that hold*3] of the eigenvalue problem. Such a treatmierj begins
analytically for each interface and each layer are preservelith @ prescibed Bloch vector and generates as its eigenval-
by the recurrence relations. ues the permls_,5|ble frequenmes of Fhe modes. In our treat-
Accordingly, this prohibits the use of energy conservation™ent, the starting point is the selection of a frequency, with
and reciprocity as valid physical tests of the accuracy of thdn€ €igenparameters being the Bloch vectors and associated
formulation in the case of an implementation in which theBloch functions. In passing, we observe that the transposi-
grating scattering matrices already preserve these propertié€n of the role of the eigenparameters makes the method
analytically. In our case, where the multipole method imbueutlined here more amenable to the study of dispersive struc-
the entire formulation with such properties, such tests aréUres since the initial choice of frequency embeds the optical
valuable only insofar as they ensure the correctness of confonstants of the materials within the formulation from the
putational implementation. It is therefore important to ensuré?Utset. _ _ _
convergence of the method, which is dependent on the trun- Itis interesting also to compare the orthogonality rela_tlons
cation dimensions of plane-wave and modal figlds., the derlved_here with thos_e for the modes of conventional
number of evanescent terms inclugiedhe only real means Waveguides, such as discussed by Snyder and 42
of validating results and comparing them against those obIN€se authors also identified relations reminiscent of Eg.
tained by entirely different means. To this end, we have con(309 that are valid in the presence of loss and an additional
firmed the accuracy of this method using results obtained€lation that holds for lossless media that might be consid-
from a recently developed Wannier function methi@®], ered to be equivalent to E¢BOb). As mentioned earlier, the

demonstrating agreement of results to better than 1 part ifikeéw-symmetric and Hermitian products in which these re-
1000. lations are cast in our work are directly related to the cross

products and scalar triple products in the theory of conven-
tional waveguides.

There are, however, quite distinct differences in the nature

We have developed the method in terms of the naturaPf the modes between conventional and photonic crystal
basis of Bloch modes of individual PC layers and havewaveguides. In lossless media, the complete set of modes in
shown that the structure of the formulation closely mirrorsconventional waveguides comprises the bound modes, which
that of thin-film optics, with familiar scalar quantities such as@re discrete, radiation modes which are continuous, and eva-
Fresnel coefficients being generalized to appropriate matriRéscent modes which are also continugdg]. Here, the
forms. While the theory presented here has been developdpund modes and radiation modes have real propagation
for 2D structures consisting of uniform cylinders in an oth- constantsg, so that exfi5z), wherez is a propagation dis-
erwise uniform background, and operated in their fundamentance, always lies on the unit circle, while the evanescent
tal polarizations, the analysis extends straightforwardly tgnodes have complex propagation constants and correspond
handle generalizations. Note that our derivation does not rel{P attenuation of the field as the mode propagates along the
on the refractive index distribution in the PC. The only dif- waveguide.
ference is that for more general refractive index distributions For a lossless photonic crystal waveguide, all of the vari-
the scattering matrices cannot be obtained using the multPus mode classes are discrete, but this is a consequence of
pole formulation; instead, methods such as those mentiond@€ finite size of the periodic supercell geometry, and is not
in Sec. Il A need to be used. The theory developed here alsan essential difference from conventional waveguides. A
extends to vector fields in conical incideni@¥]. While the ~ more substantial difference is that when a photonic crystal
scattering matrices and the form of the reciprocity and enwaveguide structure is operated in a band gap, the mode set
ergy relationships become more complex, the overall struccomprises both propagatingu|=1) and evanescent|u|
ture of the formulation is then unchanged, as are the essenti& 1) modes. However, the spectrum contains no equivalent
results concerning modal reciprocity and modal orthogonalof radiation modes, since the band gap guiding mechanism
ity. provides for total field confinement—in contrast to leaky to-

In developing the theory we have attempted to ensure thdal internal reflection which characterizes radiation modes in
the important physical concepts of reciprocity and energyconventional guides. However, when a PC waveguide is op-
conservation are represented in their most appropriate, coerated in a passband, the modes comprise a set that has the
venient, and physically intuitive form. In doing so, we paid characteristics of conventional radiation modgs =1) and
particular attention to the formal properties of the Blocha set of evanescent modég/|+ 1). While the modes are
modes and demonstrated key relations: one based on re@gain discrete, it can be demonstrated that the number of

IV. DISCUSSION AND CONCLUSIONS

056606-11



BOTTEN et al. PHYSICAL REVIEW E 70, 056606(2004)

propagating modesi.e., with |u|=1) increases roughly in conservation. We note here that E¢s5) and (303 follow
proportion to the length of the supercell period—a signaturdrom reciprocity, a geometrical constraint that does not rely
that these modes are associated with a continuum of states @m the material properties of the structure. On the other hand,
the limit when the supercell period approaches infinity. Egs.(23) and(30b) follow from conservation of energy and

In our companion articlg¢Part I, which deals with the are thus appropriate only to lossless systems. In the case of
application of the method to two-dimensional devices, themodels of 3D photonic crystal slabs, in which absorbing
calculations have relied on the scattering matrices generatdgbundary conditions are needed to isolate adjacent super-
by the multipole method20]. While this is a proven and cells, we would expect to be able to establish the symplectic
efficient tool, it has obvious restrictions in terms of the rangenature of the transfer matrix but not the orthogonality prop-
of structures and geometries that can be handled. Irrespectiegties.
of this limitation, transfer matrix methods are well suited Now that the details and the formal properties of the
[27,32 to a wide range of 2D and 3D structures as shown inrmethod have been derived, the formulation is ready to be
recent work by Liet al. [31,32 who derived efficient and used for solving propagation problems. Such applications of
accurate methods for computing the necessary scattering méae formalism to a number of different photonic crystal de-
trices. Accordingly, the key results of this paper concerningvices are given in Part Il.
both the method and the analytic properties of the modes
should readily generalize to 3D. While it is not within the
scope of this paper to develop results for fully three-
dimensional systems, we nevertheless observe that it is pos- This work was produced with the assistance of the Aus-
sible to establish results for such systems that are generaliralian Research Council under the ARC Centres of Excel-
zations of Eqs(15) and(23), and of Eqs(30a and (30b), lence program. We thank Sergei Mingaleev for providing
since these particular results follow directly from the under-numerical data with which to compare results from the Bloch
pinning physical considerations of reciprocity and energymode method.
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